Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

If [tex]$P=(3,1)$[/tex] and [tex]$Q=(-3,-7)$[/tex], find the midpoint of segment [tex][tex]$PQ$[/tex][/tex].

([tex] ? [/tex], [tex] ? [/tex])

Sagot :

To find the midpoint of a segment [tex]\( P Q \)[/tex] with endpoints [tex]\( P = (3, 1) \)[/tex] and [tex]\( Q = (-3, -7) \)[/tex], we use the midpoint formula. The midpoint [tex]\( M \)[/tex] of a line segment with endpoints [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by:

[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Here, the coordinates of point [tex]\( P \)[/tex] are [tex]\( (3, 1) \)[/tex] and the coordinates of point [tex]\( Q \)[/tex] are [tex]\( (-3, -7) \)[/tex].

Substitute [tex]\( x_1 = 3 \)[/tex], [tex]\( y_1 = 1 \)[/tex], [tex]\( x_2 = -3 \)[/tex], and [tex]\( y_2 = -7 \)[/tex] into the midpoint formula:

[tex]\[ M_x = \frac{3 + (-3)}{2} \][/tex]
[tex]\[ M_y = \frac{1 + (-7)}{2} \][/tex]

Now, calculate each component separately:

1. For [tex]\( M_x \)[/tex]:
[tex]\[ M_x = \frac{3 - 3}{2} = \frac{0}{2} = 0 \][/tex]

2. For [tex]\( M_y \)[/tex]:
[tex]\[ M_y = \frac{1 - 7}{2} = \frac{-6}{2} = -3 \][/tex]

Therefore, the coordinates of the midpoint [tex]\( M \)[/tex] are:

[tex]\[ M = (0, -3) \][/tex]

So, the midpoint of segment [tex]\( P Q \)[/tex] is [tex]\( (0, -3) \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.