Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the system of equations using the elimination method, we begin with the following equations:
[tex]\[ \begin{array}{l} 2m - 4n = 4 \quad \text{(Equation 1)} \\ m - n = 2 \quad \text{(Equation 2)} \end{array} \][/tex]
We aim to eliminate one of the variables by manipulating and combining these equations. Let's start by isolating one variable. Since the coefficient of [tex]\( m \)[/tex] in Equation 2 is smaller than in Equation 1, it may be easier to work with the second equation. Multiply Equation 2 by 2 so that the coefficients of [tex]\( m \)[/tex] in both equations match:
[tex]\[ 2(m - n) = 2 \cdot 2 \][/tex]
[tex]\[ 2m - 2n = 4 \quad \text{(Equation 3)} \][/tex]
Now we will subtract Equation 3 from Equation 1:
[tex]\[ (2m - 4n) - (2m - 2n) = 4 - 4 \][/tex]
[tex]\[ 2m - 4n - 2m + 2n = 0 \][/tex]
[tex]\[ -2n = 0 \][/tex]
This simplifies to:
[tex]\[ 2n = 0 \][/tex]
[tex]\[ n = 0 \][/tex]
With [tex]\( n \)[/tex] identified as 0, we can substitute [tex]\( n \)[/tex] back into either original equation to solve for [tex]\( m \)[/tex]. Using Equation 2:
[tex]\[ m - n = 2 \][/tex]
[tex]\[ m - 0 = 2 \][/tex]
[tex]\[ m = 2 \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ (m, n) = (2, 0) \][/tex]
Therefore, the correct answer from the given choices is:
[tex]\[ (2,0) \][/tex]
[tex]\[ \begin{array}{l} 2m - 4n = 4 \quad \text{(Equation 1)} \\ m - n = 2 \quad \text{(Equation 2)} \end{array} \][/tex]
We aim to eliminate one of the variables by manipulating and combining these equations. Let's start by isolating one variable. Since the coefficient of [tex]\( m \)[/tex] in Equation 2 is smaller than in Equation 1, it may be easier to work with the second equation. Multiply Equation 2 by 2 so that the coefficients of [tex]\( m \)[/tex] in both equations match:
[tex]\[ 2(m - n) = 2 \cdot 2 \][/tex]
[tex]\[ 2m - 2n = 4 \quad \text{(Equation 3)} \][/tex]
Now we will subtract Equation 3 from Equation 1:
[tex]\[ (2m - 4n) - (2m - 2n) = 4 - 4 \][/tex]
[tex]\[ 2m - 4n - 2m + 2n = 0 \][/tex]
[tex]\[ -2n = 0 \][/tex]
This simplifies to:
[tex]\[ 2n = 0 \][/tex]
[tex]\[ n = 0 \][/tex]
With [tex]\( n \)[/tex] identified as 0, we can substitute [tex]\( n \)[/tex] back into either original equation to solve for [tex]\( m \)[/tex]. Using Equation 2:
[tex]\[ m - n = 2 \][/tex]
[tex]\[ m - 0 = 2 \][/tex]
[tex]\[ m = 2 \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ (m, n) = (2, 0) \][/tex]
Therefore, the correct answer from the given choices is:
[tex]\[ (2,0) \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.