Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the nature of the roots of the quadratic equation [tex]\( x^2 + 7x - 60 = 0 \)[/tex], we need to evaluate the discriminant. The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the equation [tex]\( x^2 + 7x - 60 = 0 \)[/tex], the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 7 \)[/tex]
- [tex]\( c = -60 \)[/tex]
Now, we substitute these values into the discriminant formula to find [tex]\(\Delta\)[/tex]:
[tex]\[ \Delta = 7^2 - 4 \cdot 1 \cdot (-60) \][/tex]
[tex]\[ \Delta = 49 + 240 \][/tex]
[tex]\[ \Delta = 289 \][/tex]
Given that the discriminant [tex]\(\Delta\)[/tex] is 289, we analyze the nature of the roots based on the value of the discriminant:
1. If [tex]\(\Delta > 0\)[/tex], the quadratic equation has two real and unequal roots.
2. If [tex]\(\Delta = 0\)[/tex], the quadratic equation has two equal (real) roots.
3. If [tex]\(\Delta < 0\)[/tex], the quadratic equation has no real roots (the roots are complex and conjugate pairs).
Since [tex]\(\Delta = 289\)[/tex] which is greater than 0, the quadratic equation [tex]\( x^2 + 7x - 60 = 0 \)[/tex] has two real and unequal roots.
Therefore, the correct answer is:
B. two real and unequal roots
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the equation [tex]\( x^2 + 7x - 60 = 0 \)[/tex], the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 7 \)[/tex]
- [tex]\( c = -60 \)[/tex]
Now, we substitute these values into the discriminant formula to find [tex]\(\Delta\)[/tex]:
[tex]\[ \Delta = 7^2 - 4 \cdot 1 \cdot (-60) \][/tex]
[tex]\[ \Delta = 49 + 240 \][/tex]
[tex]\[ \Delta = 289 \][/tex]
Given that the discriminant [tex]\(\Delta\)[/tex] is 289, we analyze the nature of the roots based on the value of the discriminant:
1. If [tex]\(\Delta > 0\)[/tex], the quadratic equation has two real and unequal roots.
2. If [tex]\(\Delta = 0\)[/tex], the quadratic equation has two equal (real) roots.
3. If [tex]\(\Delta < 0\)[/tex], the quadratic equation has no real roots (the roots are complex and conjugate pairs).
Since [tex]\(\Delta = 289\)[/tex] which is greater than 0, the quadratic equation [tex]\( x^2 + 7x - 60 = 0 \)[/tex] has two real and unequal roots.
Therefore, the correct answer is:
B. two real and unequal roots
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.