Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve the given system of equations step-by-step using the Elimination method:
The system of equations is:
[tex]\[ \begin{array}{l} -2x + 3y = -8 \\ 5x - 2y = -2 \\ \end{array} \][/tex]
1. Multiply Each Equation:
To eliminate [tex]\( y \)[/tex], we need to make the coefficients of [tex]\( y \)[/tex] in both equations equal in magnitude but opposite in sign. Therefore, we'll multiply the first equation by 2 and the second equation by 3:
[tex]\[ \begin{aligned} &2 \times (-2x + 3y) = 2 \times (-8) \quad \Rightarrow \quad -4x + 6y = -16 \quad \quad \text{[Equation 1 multiplied by 2]} \\ &3 \times (5x - 2y) = 3 \times (-2) \quad \Rightarrow \quad 15x - 6y = -6 \quad \quad \text{[Equation 2 multiplied by 3]} \end{aligned} \][/tex]
2. Add the Two Equations:
Now add the two new equations to eliminate [tex]\( y \)[/tex]:
[tex]\[ \begin{aligned} (-4x + 6y) + (15x - 6y) &= -16 + (-6) \\ -4x + 15x + 6y - 6y &= -22 \\ 11x &= -22 \end{aligned} \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-22}{11} = -2 \][/tex]
3. Substitute [tex]\( x \)[/tex] Back into One of the Original Equations:
Use the first original equation to find [tex]\( y \)[/tex]:
[tex]\[ \begin{aligned} -2(-2) + 3y &= -8 \\ 4 + 3y &= -8 \\ 3y &= -8 - 4 \\ 3y &= -12 \\ y &= \frac{-12}{3} = -4 \end{aligned} \][/tex]
So, the solution to the system of equations is [tex]\( x = -2 \)[/tex] and [tex]\( y = -4 \)[/tex].
Therefore, the correct solution for the system of equations [tex]\( \begin{array}{l} -2x + 3y = -8 \\ 5x - 2y = -2 \end{array} \)[/tex] is:
[tex]\[ \boxed{(-2, -4)} \][/tex]
The system of equations is:
[tex]\[ \begin{array}{l} -2x + 3y = -8 \\ 5x - 2y = -2 \\ \end{array} \][/tex]
1. Multiply Each Equation:
To eliminate [tex]\( y \)[/tex], we need to make the coefficients of [tex]\( y \)[/tex] in both equations equal in magnitude but opposite in sign. Therefore, we'll multiply the first equation by 2 and the second equation by 3:
[tex]\[ \begin{aligned} &2 \times (-2x + 3y) = 2 \times (-8) \quad \Rightarrow \quad -4x + 6y = -16 \quad \quad \text{[Equation 1 multiplied by 2]} \\ &3 \times (5x - 2y) = 3 \times (-2) \quad \Rightarrow \quad 15x - 6y = -6 \quad \quad \text{[Equation 2 multiplied by 3]} \end{aligned} \][/tex]
2. Add the Two Equations:
Now add the two new equations to eliminate [tex]\( y \)[/tex]:
[tex]\[ \begin{aligned} (-4x + 6y) + (15x - 6y) &= -16 + (-6) \\ -4x + 15x + 6y - 6y &= -22 \\ 11x &= -22 \end{aligned} \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-22}{11} = -2 \][/tex]
3. Substitute [tex]\( x \)[/tex] Back into One of the Original Equations:
Use the first original equation to find [tex]\( y \)[/tex]:
[tex]\[ \begin{aligned} -2(-2) + 3y &= -8 \\ 4 + 3y &= -8 \\ 3y &= -8 - 4 \\ 3y &= -12 \\ y &= \frac{-12}{3} = -4 \end{aligned} \][/tex]
So, the solution to the system of equations is [tex]\( x = -2 \)[/tex] and [tex]\( y = -4 \)[/tex].
Therefore, the correct solution for the system of equations [tex]\( \begin{array}{l} -2x + 3y = -8 \\ 5x - 2y = -2 \end{array} \)[/tex] is:
[tex]\[ \boxed{(-2, -4)} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.