At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which table represents a linear function, we need to check if the rate of change (or slope) between consecutive points is constant for each table.
Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -6 \\ \hline 3 & -2 \\ \hline 4 & -6 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between each pair of points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-6 - (-2)}{2 - 1} = \frac{-4}{1} = -4 \][/tex]
2. Between [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{-2 - (-6)}{3 - 2} = \frac{4}{1} = 4 \][/tex]
3. Between [tex]\( x = 3 \)[/tex] and [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-6 - (-2)}{4 - 3} = \frac{-4}{1} = -4 \][/tex]
The rate of change is not constant; thus, Table 1 does not represent a linear function.
Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -5 \\ \hline 3 & -9 \\ \hline 4 & -14 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between each pair of points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-5 - (-2)}{2 - 1} = \frac{-3}{1} = -3 \][/tex]
2. Between [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{-9 - (-5)}{3 - 2} = \frac{-4}{1} = -4 \][/tex]
3. Between [tex]\( x = 3 \)[/tex] and [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-14 - (-9)}{4 - 3} = \frac{-5}{1} = -5 \][/tex]
The rate of change is not constant; thus, Table 2 does not represent a linear function.
Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -10 \\ \hline 3 & -18 \\ \hline 4 & -26 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between each pair of points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-10 - (-2)}{2 - 1} = \frac{-8}{1} = -8 \][/tex]
2. Between [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{-18 - (-10)}{3 - 2} = \frac{-8}{1} = -8 \][/tex]
3. Between [tex]\( x = 3 \)[/tex] and [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-26 - (-18)}{4 - 3} = \frac{-8}{1} = -8 \][/tex]
The rate of change is constant; thus, Table 3 represents a linear function.
Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -4 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between the two points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-4 - (-2)}{2 - 1} = \frac{-2}{1} = -2 \][/tex]
With only two points, the rate of change is constant by definition; thus, Table 4 represents a linear function.
In conclusion, the tables that represent a linear function are Table 3 and Table 4.
Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -6 \\ \hline 3 & -2 \\ \hline 4 & -6 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between each pair of points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-6 - (-2)}{2 - 1} = \frac{-4}{1} = -4 \][/tex]
2. Between [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{-2 - (-6)}{3 - 2} = \frac{4}{1} = 4 \][/tex]
3. Between [tex]\( x = 3 \)[/tex] and [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-6 - (-2)}{4 - 3} = \frac{-4}{1} = -4 \][/tex]
The rate of change is not constant; thus, Table 1 does not represent a linear function.
Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -5 \\ \hline 3 & -9 \\ \hline 4 & -14 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between each pair of points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-5 - (-2)}{2 - 1} = \frac{-3}{1} = -3 \][/tex]
2. Between [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{-9 - (-5)}{3 - 2} = \frac{-4}{1} = -4 \][/tex]
3. Between [tex]\( x = 3 \)[/tex] and [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-14 - (-9)}{4 - 3} = \frac{-5}{1} = -5 \][/tex]
The rate of change is not constant; thus, Table 2 does not represent a linear function.
Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -10 \\ \hline 3 & -18 \\ \hline 4 & -26 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between each pair of points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-10 - (-2)}{2 - 1} = \frac{-8}{1} = -8 \][/tex]
2. Between [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{-18 - (-10)}{3 - 2} = \frac{-8}{1} = -8 \][/tex]
3. Between [tex]\( x = 3 \)[/tex] and [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-26 - (-18)}{4 - 3} = \frac{-8}{1} = -8 \][/tex]
The rate of change is constant; thus, Table 3 represents a linear function.
Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -4 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between the two points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-4 - (-2)}{2 - 1} = \frac{-2}{1} = -2 \][/tex]
With only two points, the rate of change is constant by definition; thus, Table 4 represents a linear function.
In conclusion, the tables that represent a linear function are Table 3 and Table 4.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.