Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which table represents a linear function, we need to check if the rate of change (or slope) between consecutive points is constant for each table.
Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -6 \\ \hline 3 & -2 \\ \hline 4 & -6 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between each pair of points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-6 - (-2)}{2 - 1} = \frac{-4}{1} = -4 \][/tex]
2. Between [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{-2 - (-6)}{3 - 2} = \frac{4}{1} = 4 \][/tex]
3. Between [tex]\( x = 3 \)[/tex] and [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-6 - (-2)}{4 - 3} = \frac{-4}{1} = -4 \][/tex]
The rate of change is not constant; thus, Table 1 does not represent a linear function.
Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -5 \\ \hline 3 & -9 \\ \hline 4 & -14 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between each pair of points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-5 - (-2)}{2 - 1} = \frac{-3}{1} = -3 \][/tex]
2. Between [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{-9 - (-5)}{3 - 2} = \frac{-4}{1} = -4 \][/tex]
3. Between [tex]\( x = 3 \)[/tex] and [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-14 - (-9)}{4 - 3} = \frac{-5}{1} = -5 \][/tex]
The rate of change is not constant; thus, Table 2 does not represent a linear function.
Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -10 \\ \hline 3 & -18 \\ \hline 4 & -26 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between each pair of points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-10 - (-2)}{2 - 1} = \frac{-8}{1} = -8 \][/tex]
2. Between [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{-18 - (-10)}{3 - 2} = \frac{-8}{1} = -8 \][/tex]
3. Between [tex]\( x = 3 \)[/tex] and [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-26 - (-18)}{4 - 3} = \frac{-8}{1} = -8 \][/tex]
The rate of change is constant; thus, Table 3 represents a linear function.
Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -4 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between the two points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-4 - (-2)}{2 - 1} = \frac{-2}{1} = -2 \][/tex]
With only two points, the rate of change is constant by definition; thus, Table 4 represents a linear function.
In conclusion, the tables that represent a linear function are Table 3 and Table 4.
Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -6 \\ \hline 3 & -2 \\ \hline 4 & -6 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between each pair of points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-6 - (-2)}{2 - 1} = \frac{-4}{1} = -4 \][/tex]
2. Between [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{-2 - (-6)}{3 - 2} = \frac{4}{1} = 4 \][/tex]
3. Between [tex]\( x = 3 \)[/tex] and [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-6 - (-2)}{4 - 3} = \frac{-4}{1} = -4 \][/tex]
The rate of change is not constant; thus, Table 1 does not represent a linear function.
Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -5 \\ \hline 3 & -9 \\ \hline 4 & -14 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between each pair of points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-5 - (-2)}{2 - 1} = \frac{-3}{1} = -3 \][/tex]
2. Between [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{-9 - (-5)}{3 - 2} = \frac{-4}{1} = -4 \][/tex]
3. Between [tex]\( x = 3 \)[/tex] and [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-14 - (-9)}{4 - 3} = \frac{-5}{1} = -5 \][/tex]
The rate of change is not constant; thus, Table 2 does not represent a linear function.
Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -10 \\ \hline 3 & -18 \\ \hline 4 & -26 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between each pair of points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-10 - (-2)}{2 - 1} = \frac{-8}{1} = -8 \][/tex]
2. Between [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{-18 - (-10)}{3 - 2} = \frac{-8}{1} = -8 \][/tex]
3. Between [tex]\( x = 3 \)[/tex] and [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-26 - (-18)}{4 - 3} = \frac{-8}{1} = -8 \][/tex]
The rate of change is constant; thus, Table 3 represents a linear function.
Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -2 \\ \hline 2 & -4 \\ \hline \end{array} \][/tex]
Let's calculate the rate of change between the two points:
1. Between [tex]\( x = 1 \)[/tex] and [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{-4 - (-2)}{2 - 1} = \frac{-2}{1} = -2 \][/tex]
With only two points, the rate of change is constant by definition; thus, Table 4 represents a linear function.
In conclusion, the tables that represent a linear function are Table 3 and Table 4.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.