Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure! To factor the given quadratic equation [tex]\(x^2 - 4x + 4 = 0\)[/tex] into two linear factors, we'll follow these steps:
1. Identify the coefficients: In the quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex], the coefficients are:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = -4\)[/tex]
- [tex]\(c = 4\)[/tex]
2. Factoring the quadratic equation:
- First, we need to find two numbers that when multiplied give us [tex]\(a \cdot c = 1 \cdot 4 = 4\)[/tex] and when added give us [tex]\(b = -4\)[/tex].
- These two numbers are [tex]\(-2\)[/tex] and [tex]\(-2\)[/tex] because [tex]\((-2) \cdot (-2) = 4\)[/tex] and [tex]\((-2) + (-2) = -4\)[/tex].
3. Writing the equation in factored form:
- Using the numbers [tex]\(-2\)[/tex] and [tex]\(-2\)[/tex], the quadratic equation can be written as the product of two binomials:
[tex]\[ (x - 2)(x - 2) = 0 \][/tex]
- This can also be written in a more compact form as:
[tex]\[ (x - 2)^2 = 0 \][/tex]
So, the factored form of the quadratic equation [tex]\(x^2 - 4x + 4 = 0\)[/tex] is [tex]\((x - 2)^2 = 0\)[/tex].
Thus, the answer is:
[tex]\[ (x - 2)^2 \][/tex]
1. Identify the coefficients: In the quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex], the coefficients are:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = -4\)[/tex]
- [tex]\(c = 4\)[/tex]
2. Factoring the quadratic equation:
- First, we need to find two numbers that when multiplied give us [tex]\(a \cdot c = 1 \cdot 4 = 4\)[/tex] and when added give us [tex]\(b = -4\)[/tex].
- These two numbers are [tex]\(-2\)[/tex] and [tex]\(-2\)[/tex] because [tex]\((-2) \cdot (-2) = 4\)[/tex] and [tex]\((-2) + (-2) = -4\)[/tex].
3. Writing the equation in factored form:
- Using the numbers [tex]\(-2\)[/tex] and [tex]\(-2\)[/tex], the quadratic equation can be written as the product of two binomials:
[tex]\[ (x - 2)(x - 2) = 0 \][/tex]
- This can also be written in a more compact form as:
[tex]\[ (x - 2)^2 = 0 \][/tex]
So, the factored form of the quadratic equation [tex]\(x^2 - 4x + 4 = 0\)[/tex] is [tex]\((x - 2)^2 = 0\)[/tex].
Thus, the answer is:
[tex]\[ (x - 2)^2 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.