Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the correct equations for this scenario, let’s break down the information given:
1. You want to buy a total of 6 potted rose plants.
2. The plants in 8-inch pots cost [tex]$12 each. 3. The plants in 10-inch pots cost $[/tex]15 each.
4. You spend a total of $78.
Let:
- [tex]\( x \)[/tex] be the number of 8-inch pots.
- [tex]\( y \)[/tex] be the number of 10-inch pots.
### Step-by-Step Solution:
1. Equating the total number of pots:
You are purchasing a total of 6 plants which gives us the equation:
[tex]\[ x + y = 6 \][/tex]
2. Equating the total cost:
The total cost is the sum of the cost of 8-inch pots and the cost of 10-inch pots. Therefore, the equation for the total cost is:
[tex]\[ 12x + 15y = 78 \][/tex]
### Given Options:
1. [tex]\( x + y = 78 \)[/tex] and [tex]\( 12x + 15y = 6(78) \)[/tex]
2. [tex]\( y + 15y = 6 \)[/tex]
3. [tex]\( 12x + x = 78 \)[/tex]
4. [tex]\( x + y = 6 \)[/tex] and [tex]\( 12x + 15y = 78 \)[/tex]
5. [tex]\( x + y = 6 \)[/tex] and [tex]\( 15x + 12y = 78 \)[/tex]
### Explanation of Each Option:
- Option 1: Incorrect because [tex]\( x + y = 78 \)[/tex] is not the correct equation for the number of pots.
- Option 2: Incorrect because [tex]\( y + 15y = 6 \)[/tex] does not make logical sense.
- Option 3: Incorrect because [tex]\( 12x + x = 78 \)[/tex] is not relevant to the problem.
- Option 4: Correct, as it matches both correct equations derived from the given information.
- Option 5: Incorrect because the cost equation [tex]\( 15x + 12y = 78 \)[/tex] has the coefficients swapped.
### Conclusion:
The correct set of equations representing this scenario is:
[tex]\[ \begin{array}{l} x + y = 6 \\ 12x + 15y = 78 \end{array} \][/tex]
Thus, the correct choice is:
[tex]\[ \boxed{4} \][/tex]
1. You want to buy a total of 6 potted rose plants.
2. The plants in 8-inch pots cost [tex]$12 each. 3. The plants in 10-inch pots cost $[/tex]15 each.
4. You spend a total of $78.
Let:
- [tex]\( x \)[/tex] be the number of 8-inch pots.
- [tex]\( y \)[/tex] be the number of 10-inch pots.
### Step-by-Step Solution:
1. Equating the total number of pots:
You are purchasing a total of 6 plants which gives us the equation:
[tex]\[ x + y = 6 \][/tex]
2. Equating the total cost:
The total cost is the sum of the cost of 8-inch pots and the cost of 10-inch pots. Therefore, the equation for the total cost is:
[tex]\[ 12x + 15y = 78 \][/tex]
### Given Options:
1. [tex]\( x + y = 78 \)[/tex] and [tex]\( 12x + 15y = 6(78) \)[/tex]
2. [tex]\( y + 15y = 6 \)[/tex]
3. [tex]\( 12x + x = 78 \)[/tex]
4. [tex]\( x + y = 6 \)[/tex] and [tex]\( 12x + 15y = 78 \)[/tex]
5. [tex]\( x + y = 6 \)[/tex] and [tex]\( 15x + 12y = 78 \)[/tex]
### Explanation of Each Option:
- Option 1: Incorrect because [tex]\( x + y = 78 \)[/tex] is not the correct equation for the number of pots.
- Option 2: Incorrect because [tex]\( y + 15y = 6 \)[/tex] does not make logical sense.
- Option 3: Incorrect because [tex]\( 12x + x = 78 \)[/tex] is not relevant to the problem.
- Option 4: Correct, as it matches both correct equations derived from the given information.
- Option 5: Incorrect because the cost equation [tex]\( 15x + 12y = 78 \)[/tex] has the coefficients swapped.
### Conclusion:
The correct set of equations representing this scenario is:
[tex]\[ \begin{array}{l} x + y = 6 \\ 12x + 15y = 78 \end{array} \][/tex]
Thus, the correct choice is:
[tex]\[ \boxed{4} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.