Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Of course! Let's solve the inequality step-by-step:
Given the inequality:
[tex]\[ 23 + 6y > 5 \][/tex]
1. Isolate the term containing [tex]\( y \)[/tex]:
We'll start by subtracting 23 from both sides to get the term with [tex]\( y \)[/tex] by itself on one side of the inequality.
[tex]\[ 23 + 6y - 23 > 5 - 23 \][/tex]
Simplifying this, we have:
[tex]\[ 6y > -18 \][/tex]
2. Solve for [tex]\( y \)[/tex]:
Next, we'll divide both sides of the inequality by 6 to solve for [tex]\( y \)[/tex]. Since 6 is positive, the direction of the inequality will remain the same.
[tex]\[ y > \frac{-18}{6} \][/tex]
Simplifying the fraction:
[tex]\[ y > -3 \][/tex]
Therefore, the solution to the inequality [tex]\( 23 + 6y > 5 \)[/tex] is:
[tex]\[ y > -3 \][/tex]
In interval notation, this can be written as:
[tex]\[ (-3, \infty) \][/tex]
This means that [tex]\( y \)[/tex] must be greater than [tex]\(-3\)[/tex], but it has no upper limit (it can be any number greater than [tex]\(-3\)[/tex]).
Given the inequality:
[tex]\[ 23 + 6y > 5 \][/tex]
1. Isolate the term containing [tex]\( y \)[/tex]:
We'll start by subtracting 23 from both sides to get the term with [tex]\( y \)[/tex] by itself on one side of the inequality.
[tex]\[ 23 + 6y - 23 > 5 - 23 \][/tex]
Simplifying this, we have:
[tex]\[ 6y > -18 \][/tex]
2. Solve for [tex]\( y \)[/tex]:
Next, we'll divide both sides of the inequality by 6 to solve for [tex]\( y \)[/tex]. Since 6 is positive, the direction of the inequality will remain the same.
[tex]\[ y > \frac{-18}{6} \][/tex]
Simplifying the fraction:
[tex]\[ y > -3 \][/tex]
Therefore, the solution to the inequality [tex]\( 23 + 6y > 5 \)[/tex] is:
[tex]\[ y > -3 \][/tex]
In interval notation, this can be written as:
[tex]\[ (-3, \infty) \][/tex]
This means that [tex]\( y \)[/tex] must be greater than [tex]\(-3\)[/tex], but it has no upper limit (it can be any number greater than [tex]\(-3\)[/tex]).
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.