Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find an equivalent equation to [tex]\(\sqrt{x} + 11 = 15\)[/tex], we need to isolate the square root term, [tex]\(\sqrt{x}\)[/tex]. Here is a step-by-step guide:
1. Start with the original equation:
[tex]\[ \sqrt{x} + 11 = 15 \][/tex]
2. To isolate [tex]\(\sqrt{x}\)[/tex], subtract 11 from both sides of the equation:
[tex]\[ \sqrt{x} + 11 - 11 = 15 - 11 \][/tex]
3. Simplify both sides:
[tex]\[ \sqrt{x} = 4 \][/tex]
Therefore, the equivalent equation for [tex]\(\sqrt{x} + 11 = 15\)[/tex] is [tex]\(\sqrt{x} = 4\)[/tex].
Now, let's look at the given options:
1. [tex]\(x + 11 = 225\)[/tex]
2. [tex]\(x + 121 = 225\)[/tex]
3. [tex]\(\sqrt{x} - 15 + 11\)[/tex]
4. [tex]\(\sqrt{x} = 15 - 7\)[/tex]
Comparing these with [tex]\(\sqrt{x} = 4\)[/tex]:
- [tex]\(x + 11 = 225\)[/tex]: This is incorrect.
- [tex]\(x + 121 = 225\)[/tex]: This is incorrect.
- [tex]\(\sqrt{x} - 15 + 11\)[/tex]: This simplifies to [tex]\(\sqrt{x} - 4\)[/tex], which is not equivalent.
- [tex]\(\sqrt{x} = 15 - 7\)[/tex]: This simplifies to [tex]\(\sqrt{x} = 8\)[/tex], which is not correct.
None of the provided options match exactly [tex]\(\sqrt{x} = 4\)[/tex]. But if we manipulate option 4 [tex]\(\sqrt{x} = 15 - 7\)[/tex], we can simplify it:
1. Simplify the right-hand side:
[tex]\[ \sqrt{x} = 8 \][/tex]
Thus, although the correct equation [tex]\(\sqrt{x} = 4\)[/tex] isn’t explicitly listed, if the problem and choices have been transcribed correctly, and option 4 simplifies to [tex]\(\sqrt{x} = 8\)[/tex]—it might suggest there was a mistake in the provided options.
Therefore, the equivalent equation to [tex]\(\sqrt{x} + 11 = 15\)[/tex] should be:
[tex]\[ \sqrt{x} = 4 \][/tex]
1. Start with the original equation:
[tex]\[ \sqrt{x} + 11 = 15 \][/tex]
2. To isolate [tex]\(\sqrt{x}\)[/tex], subtract 11 from both sides of the equation:
[tex]\[ \sqrt{x} + 11 - 11 = 15 - 11 \][/tex]
3. Simplify both sides:
[tex]\[ \sqrt{x} = 4 \][/tex]
Therefore, the equivalent equation for [tex]\(\sqrt{x} + 11 = 15\)[/tex] is [tex]\(\sqrt{x} = 4\)[/tex].
Now, let's look at the given options:
1. [tex]\(x + 11 = 225\)[/tex]
2. [tex]\(x + 121 = 225\)[/tex]
3. [tex]\(\sqrt{x} - 15 + 11\)[/tex]
4. [tex]\(\sqrt{x} = 15 - 7\)[/tex]
Comparing these with [tex]\(\sqrt{x} = 4\)[/tex]:
- [tex]\(x + 11 = 225\)[/tex]: This is incorrect.
- [tex]\(x + 121 = 225\)[/tex]: This is incorrect.
- [tex]\(\sqrt{x} - 15 + 11\)[/tex]: This simplifies to [tex]\(\sqrt{x} - 4\)[/tex], which is not equivalent.
- [tex]\(\sqrt{x} = 15 - 7\)[/tex]: This simplifies to [tex]\(\sqrt{x} = 8\)[/tex], which is not correct.
None of the provided options match exactly [tex]\(\sqrt{x} = 4\)[/tex]. But if we manipulate option 4 [tex]\(\sqrt{x} = 15 - 7\)[/tex], we can simplify it:
1. Simplify the right-hand side:
[tex]\[ \sqrt{x} = 8 \][/tex]
Thus, although the correct equation [tex]\(\sqrt{x} = 4\)[/tex] isn’t explicitly listed, if the problem and choices have been transcribed correctly, and option 4 simplifies to [tex]\(\sqrt{x} = 8\)[/tex]—it might suggest there was a mistake in the provided options.
Therefore, the equivalent equation to [tex]\(\sqrt{x} + 11 = 15\)[/tex] should be:
[tex]\[ \sqrt{x} = 4 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.