Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the equation [tex]\( 5 \sqrt{5} \times 5^3 \div 5^{-3 / 2} = 5^{x + 2} \)[/tex], follow these steps:
1. Convert all terms to the same base:
- The term [tex]\(\sqrt{5}\)[/tex] can be written as [tex]\(5^{1/2}\)[/tex].
- The term [tex]\(5^3\)[/tex] is already in the form of [tex]\(5\)[/tex] raised to a power.
- The term [tex]\(5^{-3/2}\)[/tex] is already in the form of [tex]\(5\)[/tex] raised to a power.
2. Rewrite the expression using the exponents:
[tex]\[ 5 \times 5^{1/2} \times 5^3 \div 5^{-3/2} \][/tex]
3. Combine the exponents:
According to the properties of exponents:
[tex]\[ a^m \times a^n = a^{m+n} \quad \text{and} \quad a^m \div a^n = a^{m-n} \][/tex]
Combine the exponents as follows:
[tex]\[ 5^1 \times 5^{1/2} \times 5^3 \div 5^{-3/2} \][/tex]
Add the exponents for multiplication and subtract the exponent for division:
[tex]\[ 1 + \frac{1}{2} + 3 - \left(-\frac{3}{2}\right) \][/tex]
4. Simplify the exponents:
Combine the exponents:
[tex]\[ 1 + \frac{1}{2} + 3 + \frac{3}{2} \][/tex]
Simplify step-by-step:
[tex]\[ 1 + \frac{1}{2} = 1.5 \][/tex]
[tex]\[ 1.5 + 3 = 4.5 \][/tex]
[tex]\[ 4.5 + \frac{3}{2} = 6 \][/tex]
So, the combined exponent is [tex]\(6\)[/tex].
5. Compare both sides of the equation:
We have:
[tex]\[ 5^{6} = 5^{x + 2} \][/tex]
6. Set the exponents equal to each other:
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ 6 = x + 2 \][/tex]
7. Solve for [tex]\(x\)[/tex]:
Subtract 2 from both sides:
[tex]\[ x = 6 - 2 \][/tex]
[tex]\[ x = 4 \][/tex]
Therefore, the value of [tex]\(x\)[/tex] is [tex]\(4\)[/tex].
1. Convert all terms to the same base:
- The term [tex]\(\sqrt{5}\)[/tex] can be written as [tex]\(5^{1/2}\)[/tex].
- The term [tex]\(5^3\)[/tex] is already in the form of [tex]\(5\)[/tex] raised to a power.
- The term [tex]\(5^{-3/2}\)[/tex] is already in the form of [tex]\(5\)[/tex] raised to a power.
2. Rewrite the expression using the exponents:
[tex]\[ 5 \times 5^{1/2} \times 5^3 \div 5^{-3/2} \][/tex]
3. Combine the exponents:
According to the properties of exponents:
[tex]\[ a^m \times a^n = a^{m+n} \quad \text{and} \quad a^m \div a^n = a^{m-n} \][/tex]
Combine the exponents as follows:
[tex]\[ 5^1 \times 5^{1/2} \times 5^3 \div 5^{-3/2} \][/tex]
Add the exponents for multiplication and subtract the exponent for division:
[tex]\[ 1 + \frac{1}{2} + 3 - \left(-\frac{3}{2}\right) \][/tex]
4. Simplify the exponents:
Combine the exponents:
[tex]\[ 1 + \frac{1}{2} + 3 + \frac{3}{2} \][/tex]
Simplify step-by-step:
[tex]\[ 1 + \frac{1}{2} = 1.5 \][/tex]
[tex]\[ 1.5 + 3 = 4.5 \][/tex]
[tex]\[ 4.5 + \frac{3}{2} = 6 \][/tex]
So, the combined exponent is [tex]\(6\)[/tex].
5. Compare both sides of the equation:
We have:
[tex]\[ 5^{6} = 5^{x + 2} \][/tex]
6. Set the exponents equal to each other:
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ 6 = x + 2 \][/tex]
7. Solve for [tex]\(x\)[/tex]:
Subtract 2 from both sides:
[tex]\[ x = 6 - 2 \][/tex]
[tex]\[ x = 4 \][/tex]
Therefore, the value of [tex]\(x\)[/tex] is [tex]\(4\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.