Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's consider the given logarithmic equation:
[tex]\[ \log_{14}(537824) = 5 \][/tex]
To convert a logarithmic equation to exponential form, remember that a logarithmic equation of the form:
[tex]\[ \log_b(a) = c \][/tex]
can be rewritten in exponential form as:
[tex]\[ b^c = a \][/tex]
Here, [tex]\(b\)[/tex] is the base of the logarithm, [tex]\(a\)[/tex] is the number we are taking the logarithm of, and [tex]\(c\)[/tex] is the result of the logarithm.
1. Identify the base ([tex]\(b\)[/tex]), result of the logarithm ([tex]\(c\)[/tex]), and the number being logged ([tex]\(a\)[/tex]).
- The base [tex]\(b\)[/tex] is [tex]\(14\)[/tex].
- The result of the logarithm [tex]\(c\)[/tex] is [tex]\(5\)[/tex].
- The number being logged [tex]\(a\)[/tex] is [tex]\(537824\)[/tex].
2. Substitute these values into the exponential form:
[tex]\[ b^c = a \][/tex]
3. Plug in [tex]\(b = 14\)[/tex], [tex]\(c = 5\)[/tex], and [tex]\(a = 537824\)[/tex]:
[tex]\[ 14^5 = 537824 \][/tex]
Therefore, the exponential form of [tex]\(\log_{14}(537824) = 5\)[/tex] is:
[tex]\[ 14^5 = 537824 \][/tex]
[tex]\[ \log_{14}(537824) = 5 \][/tex]
To convert a logarithmic equation to exponential form, remember that a logarithmic equation of the form:
[tex]\[ \log_b(a) = c \][/tex]
can be rewritten in exponential form as:
[tex]\[ b^c = a \][/tex]
Here, [tex]\(b\)[/tex] is the base of the logarithm, [tex]\(a\)[/tex] is the number we are taking the logarithm of, and [tex]\(c\)[/tex] is the result of the logarithm.
1. Identify the base ([tex]\(b\)[/tex]), result of the logarithm ([tex]\(c\)[/tex]), and the number being logged ([tex]\(a\)[/tex]).
- The base [tex]\(b\)[/tex] is [tex]\(14\)[/tex].
- The result of the logarithm [tex]\(c\)[/tex] is [tex]\(5\)[/tex].
- The number being logged [tex]\(a\)[/tex] is [tex]\(537824\)[/tex].
2. Substitute these values into the exponential form:
[tex]\[ b^c = a \][/tex]
3. Plug in [tex]\(b = 14\)[/tex], [tex]\(c = 5\)[/tex], and [tex]\(a = 537824\)[/tex]:
[tex]\[ 14^5 = 537824 \][/tex]
Therefore, the exponential form of [tex]\(\log_{14}(537824) = 5\)[/tex] is:
[tex]\[ 14^5 = 537824 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.