At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To expand the expression [tex]\(\log \left(\frac{\sqrt[5]{x}}{y}\right)\)[/tex], we will use the properties of logarithms. Specifically, we will use the quotient rule and the power rule.
### Steps:
1. Quotient Rule:
The logarithm of a quotient is the difference of the logarithms.
[tex]\[ \log \left(\frac{a}{b}\right) = \log a - \log b \][/tex]
Applying this to [tex]\(\log \left(\frac{\sqrt[5]{x}}{y}\right)\)[/tex]:
[tex]\[ \log \left(\frac{\sqrt[5]{x}}{y}\right) = \log (\sqrt[5]{x}) - \log (y) \][/tex]
2. Power Rule:
The logarithm of a power is the exponent times the logarithm of the base.
[tex]\[ \log (a^b) = b \log a \][/tex]
Applying this to [tex]\(\log (\sqrt[5]{x})\)[/tex]:
[tex]\(\sqrt[5]{x}\)[/tex] can be written as [tex]\(x^{1/5}\)[/tex]. Therefore:
[tex]\[ \log (\sqrt[5]{x}) = \log (x^{1/5}) = \frac{1}{5} \log (x) \][/tex]
3. Combine Results:
Substitute this result back into the first expression we got:
[tex]\[ \log \left(\frac{\sqrt[5]{x}}{y}\right) = \frac{1}{5} \log (x) - \log (y) \][/tex]
### Conclusion:
The expanded form of [tex]\(\log \left(\frac{\sqrt[5]{x}}{y}\right)\)[/tex] is:
[tex]\[ \boxed{\frac{1}{5} \log x - \log y} \][/tex]
Thus, the correct option from the given choices is:
[tex]\[ \frac{1}{5} \log x - \log y \][/tex]
### Steps:
1. Quotient Rule:
The logarithm of a quotient is the difference of the logarithms.
[tex]\[ \log \left(\frac{a}{b}\right) = \log a - \log b \][/tex]
Applying this to [tex]\(\log \left(\frac{\sqrt[5]{x}}{y}\right)\)[/tex]:
[tex]\[ \log \left(\frac{\sqrt[5]{x}}{y}\right) = \log (\sqrt[5]{x}) - \log (y) \][/tex]
2. Power Rule:
The logarithm of a power is the exponent times the logarithm of the base.
[tex]\[ \log (a^b) = b \log a \][/tex]
Applying this to [tex]\(\log (\sqrt[5]{x})\)[/tex]:
[tex]\(\sqrt[5]{x}\)[/tex] can be written as [tex]\(x^{1/5}\)[/tex]. Therefore:
[tex]\[ \log (\sqrt[5]{x}) = \log (x^{1/5}) = \frac{1}{5} \log (x) \][/tex]
3. Combine Results:
Substitute this result back into the first expression we got:
[tex]\[ \log \left(\frac{\sqrt[5]{x}}{y}\right) = \frac{1}{5} \log (x) - \log (y) \][/tex]
### Conclusion:
The expanded form of [tex]\(\log \left(\frac{\sqrt[5]{x}}{y}\right)\)[/tex] is:
[tex]\[ \boxed{\frac{1}{5} \log x - \log y} \][/tex]
Thus, the correct option from the given choices is:
[tex]\[ \frac{1}{5} \log x - \log y \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.