Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this problem, let's break it down step-by-step:
1. Calculate the volume of the rectangular prism:
- The base of the prism is a square with sides measuring 5 cm.
- The height of the prism is 12 cm.
- The volume [tex]\(V_{\text{prism}}\)[/tex] of a rectangular prism is given by the formula:
[tex]\[ V_{\text{prism}} = \text{base area} \times \text{height} \][/tex]
Since the base is a square:
[tex]\[ \text{base area} = \text{side}^2 = 5 \times 5 = 25 \, \text{cm}^2 \][/tex]
Therefore:
[tex]\[ V_{\text{prism}} = 25 \, \text{cm}^2 \times 12 \, \text{cm} = 300 \, \text{cm}^3 \][/tex]
2. Calculate the volume of the pyramid:
- The pyramid has the same base as the prism, which is a square with side 5 cm.
- The height of the pyramid is half the height of the prism, which is:
[tex]\[ \text{height of pyramid} = \frac{12}{2} = 6 \, \text{cm} \][/tex]
- The volume [tex]\(V_{\text{pyramid}}\)[/tex] of a pyramid is given by the formula:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \times \text{base area} \times \text{height} \][/tex]
Using the previously calculated base area of 25 cm²:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \times 25 \, \text{cm}^2 \times 6 \, \text{cm} \][/tex]
Simplifying:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \times 150 \, \text{cm}^3 = 50 \, \text{cm}^3 \][/tex]
3. Calculate the volume of the space outside the pyramid but inside the prism:
- To find this volume, subtract the volume of the pyramid from the volume of the prism:
[tex]\[ \text{space volume} = V_{\text{prism}} - V_{\text{pyramid}} \][/tex]
Using the volumes calculated above:
[tex]\[ \text{space volume} = 300 \, \text{cm}^3 - 50 \, \text{cm}^3 = 250 \, \text{cm}^3 \][/tex]
The volume of the space outside the pyramid but inside the prism is:
[tex]\[ 250 \, \text{cm}^3 \][/tex]
Therefore, the correct choice is:
D. 250 cm³
1. Calculate the volume of the rectangular prism:
- The base of the prism is a square with sides measuring 5 cm.
- The height of the prism is 12 cm.
- The volume [tex]\(V_{\text{prism}}\)[/tex] of a rectangular prism is given by the formula:
[tex]\[ V_{\text{prism}} = \text{base area} \times \text{height} \][/tex]
Since the base is a square:
[tex]\[ \text{base area} = \text{side}^2 = 5 \times 5 = 25 \, \text{cm}^2 \][/tex]
Therefore:
[tex]\[ V_{\text{prism}} = 25 \, \text{cm}^2 \times 12 \, \text{cm} = 300 \, \text{cm}^3 \][/tex]
2. Calculate the volume of the pyramid:
- The pyramid has the same base as the prism, which is a square with side 5 cm.
- The height of the pyramid is half the height of the prism, which is:
[tex]\[ \text{height of pyramid} = \frac{12}{2} = 6 \, \text{cm} \][/tex]
- The volume [tex]\(V_{\text{pyramid}}\)[/tex] of a pyramid is given by the formula:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \times \text{base area} \times \text{height} \][/tex]
Using the previously calculated base area of 25 cm²:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \times 25 \, \text{cm}^2 \times 6 \, \text{cm} \][/tex]
Simplifying:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \times 150 \, \text{cm}^3 = 50 \, \text{cm}^3 \][/tex]
3. Calculate the volume of the space outside the pyramid but inside the prism:
- To find this volume, subtract the volume of the pyramid from the volume of the prism:
[tex]\[ \text{space volume} = V_{\text{prism}} - V_{\text{pyramid}} \][/tex]
Using the volumes calculated above:
[tex]\[ \text{space volume} = 300 \, \text{cm}^3 - 50 \, \text{cm}^3 = 250 \, \text{cm}^3 \][/tex]
The volume of the space outside the pyramid but inside the prism is:
[tex]\[ 250 \, \text{cm}^3 \][/tex]
Therefore, the correct choice is:
D. 250 cm³
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.