Answered

Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Construct an ICE table to calculate the molar solubility of [tex]$CaF_2$[/tex] at [tex]$25^{\circ} C$[/tex] in a solution containing [tex]$0.010 \text{ M} \, Ca \left( NO_3 \right)_2$[/tex]. The solubility product constant is [tex][tex]$K_{sp} = 3.9 \times 10^{-11}$[/tex][/tex].

Complete the table by typing in the correct answer, represented by the orange letters in the ICE table. (When writing values between 0 and 1, make sure to enter a 0 before the decimal place.)

A: [tex]$\square$[/tex] [tex]$\square$[/tex]
B: [tex]$\square$[/tex] (Write to three decimal places.)

C: [tex]$\square$[/tex]
D: [tex]$\square$[/tex]
E: [tex]$\square$[/tex] [tex]$\square$[/tex] (Write to three decimal places.)

\begin{tabular}{|c|c|c|c|}
\hline
& [tex]$CaF_2(s)$[/tex] & [tex]$Ca^{2+}(aq)$[/tex] & [tex]$2F^{-}(aq)$[/tex] \\
\hline
I & Solid & A M & B M \\
\hline
C & [tex]$-x$[/tex] & + C & + D \\
\hline
E & Less solid & EM & [tex]$2x$[/tex] \\
\hline
\end{tabular}


Sagot :

To determine the molar solubility of [tex]\( \text{CaF}_2 \)[/tex] in a solution of [tex]\( 0.010 \, \text{M} \, \text{Ca(NO}_3)_2 \)[/tex] at [tex]\( 25^\circ \text{C} \)[/tex], we need to use the solubility product constant [tex]\( K_{sp} \)[/tex] of [tex]\( \text{CaF}_2 \)[/tex].

[tex]\[ \text{K}_{sp} (\text{CaF}_2) = 3.9 \times 10^{-11} \][/tex]

The dissociation of [tex]\( \text{CaF}_2 \)[/tex] in water is given by:

[tex]\[ \text{CaF}_2 (s) \rightleftharpoons \text{Ca}^{2+} (aq) + 2 \text{F}^- (aq) \][/tex]

Given that the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex] is [tex]\( 0.010 \, \text{M} \)[/tex] from the [tex]\( \text{Ca(NO}_3)_2 \)[/tex] salt, we'll build an ICE (Initial, Change, Equilibrium) table:

[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M (A)} & 0.000 \, \text{M (B)} \\ \hline \text{C (Change)} & -x & +x & +2x \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 + x & 2x \\ \hline \end{tabular} \][/tex]

Next, we'll use the [tex]\( K_{sp} \)[/tex] expression to solve for [tex]\( x \)[/tex], which represents the molar solubility of [tex]\( \text{CaF}_2 \)[/tex]:

[tex]\[ \text{K}_{sp} = [\text{Ca}^{2+}] [\text{F}^-]^2 \][/tex]

Substituting the equilibrium concentrations into the [tex]\( K_{sp} \)[/tex] expression:

[tex]\[ 3.9 \times 10^{-11} = (0.010 + x) (2x)^2 \][/tex]

Since [tex]\( x \)[/tex] is very small compared to the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex], we can approximate [tex]\( 0.010 + x \approx 0.010 \)[/tex]:

[tex]\[ 3.9 \times 10^{-11} \approx (0.010) (2x)^2 \][/tex]

[tex]\[ 3.9 \times 10^{-11} = 0.010 \cdot 4x^2 \][/tex]

[tex]\[ 3.9 \times 10^{-11} = 4.0 \times 10^{-2} x^2 \][/tex]

[tex]\[ x^2 = \frac{3.9 \times 10^{-11}}{4.0 \times 10^{-2}} \][/tex]

[tex]\[ x^2 = 9.75 \times 10^{-10} \][/tex]

[tex]\[ x = \sqrt{9.75 \times 10^{-10}} \][/tex]

[tex]\[ x \approx 3.12 \times 10^{-5} \][/tex]

Let's round this to three decimal places:

[tex]\[ x \approx 0.000 \, 0312 \text{ M} \][/tex]

Now, we can fill in the ICE table:

[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M} (A) & 0.000 \, \text{M} (B) \\ \hline \text{C (Change)} & -x & +0.000 \, 0312 \text{ M} (C) & +0.000 \, 0624 \text{ M} (D) \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 \text{ , 000} (E) & 0.000 \, 0624 \text{ M} (rounded to three decimal places) \\ \hline \end{tabular} \][/tex]

So, the correct values for the orange letters in the ICE table are:

A: [tex]\( 0.010 \)[/tex]
B: [tex]\( 0.000 \)[/tex]
C: [tex]\( 0.000 \, 0312 \)[/tex]
D: [tex]\( 0.000 \, 0624 \)[/tex]
E: [tex]\( 0.010 \)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.