Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the molar solubility of [tex]\( \text{CaF}_2 \)[/tex] in a solution of [tex]\( 0.010 \, \text{M} \, \text{Ca(NO}_3)_2 \)[/tex] at [tex]\( 25^\circ \text{C} \)[/tex], we need to use the solubility product constant [tex]\( K_{sp} \)[/tex] of [tex]\( \text{CaF}_2 \)[/tex].
[tex]\[ \text{K}_{sp} (\text{CaF}_2) = 3.9 \times 10^{-11} \][/tex]
The dissociation of [tex]\( \text{CaF}_2 \)[/tex] in water is given by:
[tex]\[ \text{CaF}_2 (s) \rightleftharpoons \text{Ca}^{2+} (aq) + 2 \text{F}^- (aq) \][/tex]
Given that the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex] is [tex]\( 0.010 \, \text{M} \)[/tex] from the [tex]\( \text{Ca(NO}_3)_2 \)[/tex] salt, we'll build an ICE (Initial, Change, Equilibrium) table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M (A)} & 0.000 \, \text{M (B)} \\ \hline \text{C (Change)} & -x & +x & +2x \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 + x & 2x \\ \hline \end{tabular} \][/tex]
Next, we'll use the [tex]\( K_{sp} \)[/tex] expression to solve for [tex]\( x \)[/tex], which represents the molar solubility of [tex]\( \text{CaF}_2 \)[/tex]:
[tex]\[ \text{K}_{sp} = [\text{Ca}^{2+}] [\text{F}^-]^2 \][/tex]
Substituting the equilibrium concentrations into the [tex]\( K_{sp} \)[/tex] expression:
[tex]\[ 3.9 \times 10^{-11} = (0.010 + x) (2x)^2 \][/tex]
Since [tex]\( x \)[/tex] is very small compared to the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex], we can approximate [tex]\( 0.010 + x \approx 0.010 \)[/tex]:
[tex]\[ 3.9 \times 10^{-11} \approx (0.010) (2x)^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 0.010 \cdot 4x^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 4.0 \times 10^{-2} x^2 \][/tex]
[tex]\[ x^2 = \frac{3.9 \times 10^{-11}}{4.0 \times 10^{-2}} \][/tex]
[tex]\[ x^2 = 9.75 \times 10^{-10} \][/tex]
[tex]\[ x = \sqrt{9.75 \times 10^{-10}} \][/tex]
[tex]\[ x \approx 3.12 \times 10^{-5} \][/tex]
Let's round this to three decimal places:
[tex]\[ x \approx 0.000 \, 0312 \text{ M} \][/tex]
Now, we can fill in the ICE table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M} (A) & 0.000 \, \text{M} (B) \\ \hline \text{C (Change)} & -x & +0.000 \, 0312 \text{ M} (C) & +0.000 \, 0624 \text{ M} (D) \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 \text{ , 000} (E) & 0.000 \, 0624 \text{ M} (rounded to three decimal places) \\ \hline \end{tabular} \][/tex]
So, the correct values for the orange letters in the ICE table are:
A: [tex]\( 0.010 \)[/tex]
B: [tex]\( 0.000 \)[/tex]
C: [tex]\( 0.000 \, 0312 \)[/tex]
D: [tex]\( 0.000 \, 0624 \)[/tex]
E: [tex]\( 0.010 \)[/tex]
[tex]\[ \text{K}_{sp} (\text{CaF}_2) = 3.9 \times 10^{-11} \][/tex]
The dissociation of [tex]\( \text{CaF}_2 \)[/tex] in water is given by:
[tex]\[ \text{CaF}_2 (s) \rightleftharpoons \text{Ca}^{2+} (aq) + 2 \text{F}^- (aq) \][/tex]
Given that the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex] is [tex]\( 0.010 \, \text{M} \)[/tex] from the [tex]\( \text{Ca(NO}_3)_2 \)[/tex] salt, we'll build an ICE (Initial, Change, Equilibrium) table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M (A)} & 0.000 \, \text{M (B)} \\ \hline \text{C (Change)} & -x & +x & +2x \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 + x & 2x \\ \hline \end{tabular} \][/tex]
Next, we'll use the [tex]\( K_{sp} \)[/tex] expression to solve for [tex]\( x \)[/tex], which represents the molar solubility of [tex]\( \text{CaF}_2 \)[/tex]:
[tex]\[ \text{K}_{sp} = [\text{Ca}^{2+}] [\text{F}^-]^2 \][/tex]
Substituting the equilibrium concentrations into the [tex]\( K_{sp} \)[/tex] expression:
[tex]\[ 3.9 \times 10^{-11} = (0.010 + x) (2x)^2 \][/tex]
Since [tex]\( x \)[/tex] is very small compared to the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex], we can approximate [tex]\( 0.010 + x \approx 0.010 \)[/tex]:
[tex]\[ 3.9 \times 10^{-11} \approx (0.010) (2x)^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 0.010 \cdot 4x^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 4.0 \times 10^{-2} x^2 \][/tex]
[tex]\[ x^2 = \frac{3.9 \times 10^{-11}}{4.0 \times 10^{-2}} \][/tex]
[tex]\[ x^2 = 9.75 \times 10^{-10} \][/tex]
[tex]\[ x = \sqrt{9.75 \times 10^{-10}} \][/tex]
[tex]\[ x \approx 3.12 \times 10^{-5} \][/tex]
Let's round this to three decimal places:
[tex]\[ x \approx 0.000 \, 0312 \text{ M} \][/tex]
Now, we can fill in the ICE table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M} (A) & 0.000 \, \text{M} (B) \\ \hline \text{C (Change)} & -x & +0.000 \, 0312 \text{ M} (C) & +0.000 \, 0624 \text{ M} (D) \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 \text{ , 000} (E) & 0.000 \, 0624 \text{ M} (rounded to three decimal places) \\ \hline \end{tabular} \][/tex]
So, the correct values for the orange letters in the ICE table are:
A: [tex]\( 0.010 \)[/tex]
B: [tex]\( 0.000 \)[/tex]
C: [tex]\( 0.000 \, 0312 \)[/tex]
D: [tex]\( 0.000 \, 0624 \)[/tex]
E: [tex]\( 0.010 \)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.