Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the molar solubility of [tex]\( \text{CaF}_2 \)[/tex] in a solution of [tex]\( 0.010 \, \text{M} \, \text{Ca(NO}_3)_2 \)[/tex] at [tex]\( 25^\circ \text{C} \)[/tex], we need to use the solubility product constant [tex]\( K_{sp} \)[/tex] of [tex]\( \text{CaF}_2 \)[/tex].
[tex]\[ \text{K}_{sp} (\text{CaF}_2) = 3.9 \times 10^{-11} \][/tex]
The dissociation of [tex]\( \text{CaF}_2 \)[/tex] in water is given by:
[tex]\[ \text{CaF}_2 (s) \rightleftharpoons \text{Ca}^{2+} (aq) + 2 \text{F}^- (aq) \][/tex]
Given that the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex] is [tex]\( 0.010 \, \text{M} \)[/tex] from the [tex]\( \text{Ca(NO}_3)_2 \)[/tex] salt, we'll build an ICE (Initial, Change, Equilibrium) table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M (A)} & 0.000 \, \text{M (B)} \\ \hline \text{C (Change)} & -x & +x & +2x \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 + x & 2x \\ \hline \end{tabular} \][/tex]
Next, we'll use the [tex]\( K_{sp} \)[/tex] expression to solve for [tex]\( x \)[/tex], which represents the molar solubility of [tex]\( \text{CaF}_2 \)[/tex]:
[tex]\[ \text{K}_{sp} = [\text{Ca}^{2+}] [\text{F}^-]^2 \][/tex]
Substituting the equilibrium concentrations into the [tex]\( K_{sp} \)[/tex] expression:
[tex]\[ 3.9 \times 10^{-11} = (0.010 + x) (2x)^2 \][/tex]
Since [tex]\( x \)[/tex] is very small compared to the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex], we can approximate [tex]\( 0.010 + x \approx 0.010 \)[/tex]:
[tex]\[ 3.9 \times 10^{-11} \approx (0.010) (2x)^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 0.010 \cdot 4x^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 4.0 \times 10^{-2} x^2 \][/tex]
[tex]\[ x^2 = \frac{3.9 \times 10^{-11}}{4.0 \times 10^{-2}} \][/tex]
[tex]\[ x^2 = 9.75 \times 10^{-10} \][/tex]
[tex]\[ x = \sqrt{9.75 \times 10^{-10}} \][/tex]
[tex]\[ x \approx 3.12 \times 10^{-5} \][/tex]
Let's round this to three decimal places:
[tex]\[ x \approx 0.000 \, 0312 \text{ M} \][/tex]
Now, we can fill in the ICE table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M} (A) & 0.000 \, \text{M} (B) \\ \hline \text{C (Change)} & -x & +0.000 \, 0312 \text{ M} (C) & +0.000 \, 0624 \text{ M} (D) \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 \text{ , 000} (E) & 0.000 \, 0624 \text{ M} (rounded to three decimal places) \\ \hline \end{tabular} \][/tex]
So, the correct values for the orange letters in the ICE table are:
A: [tex]\( 0.010 \)[/tex]
B: [tex]\( 0.000 \)[/tex]
C: [tex]\( 0.000 \, 0312 \)[/tex]
D: [tex]\( 0.000 \, 0624 \)[/tex]
E: [tex]\( 0.010 \)[/tex]
[tex]\[ \text{K}_{sp} (\text{CaF}_2) = 3.9 \times 10^{-11} \][/tex]
The dissociation of [tex]\( \text{CaF}_2 \)[/tex] in water is given by:
[tex]\[ \text{CaF}_2 (s) \rightleftharpoons \text{Ca}^{2+} (aq) + 2 \text{F}^- (aq) \][/tex]
Given that the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex] is [tex]\( 0.010 \, \text{M} \)[/tex] from the [tex]\( \text{Ca(NO}_3)_2 \)[/tex] salt, we'll build an ICE (Initial, Change, Equilibrium) table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M (A)} & 0.000 \, \text{M (B)} \\ \hline \text{C (Change)} & -x & +x & +2x \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 + x & 2x \\ \hline \end{tabular} \][/tex]
Next, we'll use the [tex]\( K_{sp} \)[/tex] expression to solve for [tex]\( x \)[/tex], which represents the molar solubility of [tex]\( \text{CaF}_2 \)[/tex]:
[tex]\[ \text{K}_{sp} = [\text{Ca}^{2+}] [\text{F}^-]^2 \][/tex]
Substituting the equilibrium concentrations into the [tex]\( K_{sp} \)[/tex] expression:
[tex]\[ 3.9 \times 10^{-11} = (0.010 + x) (2x)^2 \][/tex]
Since [tex]\( x \)[/tex] is very small compared to the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex], we can approximate [tex]\( 0.010 + x \approx 0.010 \)[/tex]:
[tex]\[ 3.9 \times 10^{-11} \approx (0.010) (2x)^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 0.010 \cdot 4x^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 4.0 \times 10^{-2} x^2 \][/tex]
[tex]\[ x^2 = \frac{3.9 \times 10^{-11}}{4.0 \times 10^{-2}} \][/tex]
[tex]\[ x^2 = 9.75 \times 10^{-10} \][/tex]
[tex]\[ x = \sqrt{9.75 \times 10^{-10}} \][/tex]
[tex]\[ x \approx 3.12 \times 10^{-5} \][/tex]
Let's round this to three decimal places:
[tex]\[ x \approx 0.000 \, 0312 \text{ M} \][/tex]
Now, we can fill in the ICE table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M} (A) & 0.000 \, \text{M} (B) \\ \hline \text{C (Change)} & -x & +0.000 \, 0312 \text{ M} (C) & +0.000 \, 0624 \text{ M} (D) \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 \text{ , 000} (E) & 0.000 \, 0624 \text{ M} (rounded to three decimal places) \\ \hline \end{tabular} \][/tex]
So, the correct values for the orange letters in the ICE table are:
A: [tex]\( 0.010 \)[/tex]
B: [tex]\( 0.000 \)[/tex]
C: [tex]\( 0.000 \, 0312 \)[/tex]
D: [tex]\( 0.000 \, 0624 \)[/tex]
E: [tex]\( 0.010 \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.