At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the molar solubility of [tex]\( \text{CaF}_2 \)[/tex] in a solution of [tex]\( 0.010 \, \text{M} \, \text{Ca(NO}_3)_2 \)[/tex] at [tex]\( 25^\circ \text{C} \)[/tex], we need to use the solubility product constant [tex]\( K_{sp} \)[/tex] of [tex]\( \text{CaF}_2 \)[/tex].
[tex]\[ \text{K}_{sp} (\text{CaF}_2) = 3.9 \times 10^{-11} \][/tex]
The dissociation of [tex]\( \text{CaF}_2 \)[/tex] in water is given by:
[tex]\[ \text{CaF}_2 (s) \rightleftharpoons \text{Ca}^{2+} (aq) + 2 \text{F}^- (aq) \][/tex]
Given that the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex] is [tex]\( 0.010 \, \text{M} \)[/tex] from the [tex]\( \text{Ca(NO}_3)_2 \)[/tex] salt, we'll build an ICE (Initial, Change, Equilibrium) table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M (A)} & 0.000 \, \text{M (B)} \\ \hline \text{C (Change)} & -x & +x & +2x \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 + x & 2x \\ \hline \end{tabular} \][/tex]
Next, we'll use the [tex]\( K_{sp} \)[/tex] expression to solve for [tex]\( x \)[/tex], which represents the molar solubility of [tex]\( \text{CaF}_2 \)[/tex]:
[tex]\[ \text{K}_{sp} = [\text{Ca}^{2+}] [\text{F}^-]^2 \][/tex]
Substituting the equilibrium concentrations into the [tex]\( K_{sp} \)[/tex] expression:
[tex]\[ 3.9 \times 10^{-11} = (0.010 + x) (2x)^2 \][/tex]
Since [tex]\( x \)[/tex] is very small compared to the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex], we can approximate [tex]\( 0.010 + x \approx 0.010 \)[/tex]:
[tex]\[ 3.9 \times 10^{-11} \approx (0.010) (2x)^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 0.010 \cdot 4x^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 4.0 \times 10^{-2} x^2 \][/tex]
[tex]\[ x^2 = \frac{3.9 \times 10^{-11}}{4.0 \times 10^{-2}} \][/tex]
[tex]\[ x^2 = 9.75 \times 10^{-10} \][/tex]
[tex]\[ x = \sqrt{9.75 \times 10^{-10}} \][/tex]
[tex]\[ x \approx 3.12 \times 10^{-5} \][/tex]
Let's round this to three decimal places:
[tex]\[ x \approx 0.000 \, 0312 \text{ M} \][/tex]
Now, we can fill in the ICE table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M} (A) & 0.000 \, \text{M} (B) \\ \hline \text{C (Change)} & -x & +0.000 \, 0312 \text{ M} (C) & +0.000 \, 0624 \text{ M} (D) \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 \text{ , 000} (E) & 0.000 \, 0624 \text{ M} (rounded to three decimal places) \\ \hline \end{tabular} \][/tex]
So, the correct values for the orange letters in the ICE table are:
A: [tex]\( 0.010 \)[/tex]
B: [tex]\( 0.000 \)[/tex]
C: [tex]\( 0.000 \, 0312 \)[/tex]
D: [tex]\( 0.000 \, 0624 \)[/tex]
E: [tex]\( 0.010 \)[/tex]
[tex]\[ \text{K}_{sp} (\text{CaF}_2) = 3.9 \times 10^{-11} \][/tex]
The dissociation of [tex]\( \text{CaF}_2 \)[/tex] in water is given by:
[tex]\[ \text{CaF}_2 (s) \rightleftharpoons \text{Ca}^{2+} (aq) + 2 \text{F}^- (aq) \][/tex]
Given that the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex] is [tex]\( 0.010 \, \text{M} \)[/tex] from the [tex]\( \text{Ca(NO}_3)_2 \)[/tex] salt, we'll build an ICE (Initial, Change, Equilibrium) table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M (A)} & 0.000 \, \text{M (B)} \\ \hline \text{C (Change)} & -x & +x & +2x \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 + x & 2x \\ \hline \end{tabular} \][/tex]
Next, we'll use the [tex]\( K_{sp} \)[/tex] expression to solve for [tex]\( x \)[/tex], which represents the molar solubility of [tex]\( \text{CaF}_2 \)[/tex]:
[tex]\[ \text{K}_{sp} = [\text{Ca}^{2+}] [\text{F}^-]^2 \][/tex]
Substituting the equilibrium concentrations into the [tex]\( K_{sp} \)[/tex] expression:
[tex]\[ 3.9 \times 10^{-11} = (0.010 + x) (2x)^2 \][/tex]
Since [tex]\( x \)[/tex] is very small compared to the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex], we can approximate [tex]\( 0.010 + x \approx 0.010 \)[/tex]:
[tex]\[ 3.9 \times 10^{-11} \approx (0.010) (2x)^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 0.010 \cdot 4x^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 4.0 \times 10^{-2} x^2 \][/tex]
[tex]\[ x^2 = \frac{3.9 \times 10^{-11}}{4.0 \times 10^{-2}} \][/tex]
[tex]\[ x^2 = 9.75 \times 10^{-10} \][/tex]
[tex]\[ x = \sqrt{9.75 \times 10^{-10}} \][/tex]
[tex]\[ x \approx 3.12 \times 10^{-5} \][/tex]
Let's round this to three decimal places:
[tex]\[ x \approx 0.000 \, 0312 \text{ M} \][/tex]
Now, we can fill in the ICE table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M} (A) & 0.000 \, \text{M} (B) \\ \hline \text{C (Change)} & -x & +0.000 \, 0312 \text{ M} (C) & +0.000 \, 0624 \text{ M} (D) \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 \text{ , 000} (E) & 0.000 \, 0624 \text{ M} (rounded to three decimal places) \\ \hline \end{tabular} \][/tex]
So, the correct values for the orange letters in the ICE table are:
A: [tex]\( 0.010 \)[/tex]
B: [tex]\( 0.000 \)[/tex]
C: [tex]\( 0.000 \, 0312 \)[/tex]
D: [tex]\( 0.000 \, 0624 \)[/tex]
E: [tex]\( 0.010 \)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.