Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the molar solubility of [tex]\( \text{CaF}_2 \)[/tex] in a solution of [tex]\( 0.010 \, \text{M} \, \text{Ca(NO}_3)_2 \)[/tex] at [tex]\( 25^\circ \text{C} \)[/tex], we need to use the solubility product constant [tex]\( K_{sp} \)[/tex] of [tex]\( \text{CaF}_2 \)[/tex].
[tex]\[ \text{K}_{sp} (\text{CaF}_2) = 3.9 \times 10^{-11} \][/tex]
The dissociation of [tex]\( \text{CaF}_2 \)[/tex] in water is given by:
[tex]\[ \text{CaF}_2 (s) \rightleftharpoons \text{Ca}^{2+} (aq) + 2 \text{F}^- (aq) \][/tex]
Given that the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex] is [tex]\( 0.010 \, \text{M} \)[/tex] from the [tex]\( \text{Ca(NO}_3)_2 \)[/tex] salt, we'll build an ICE (Initial, Change, Equilibrium) table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M (A)} & 0.000 \, \text{M (B)} \\ \hline \text{C (Change)} & -x & +x & +2x \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 + x & 2x \\ \hline \end{tabular} \][/tex]
Next, we'll use the [tex]\( K_{sp} \)[/tex] expression to solve for [tex]\( x \)[/tex], which represents the molar solubility of [tex]\( \text{CaF}_2 \)[/tex]:
[tex]\[ \text{K}_{sp} = [\text{Ca}^{2+}] [\text{F}^-]^2 \][/tex]
Substituting the equilibrium concentrations into the [tex]\( K_{sp} \)[/tex] expression:
[tex]\[ 3.9 \times 10^{-11} = (0.010 + x) (2x)^2 \][/tex]
Since [tex]\( x \)[/tex] is very small compared to the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex], we can approximate [tex]\( 0.010 + x \approx 0.010 \)[/tex]:
[tex]\[ 3.9 \times 10^{-11} \approx (0.010) (2x)^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 0.010 \cdot 4x^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 4.0 \times 10^{-2} x^2 \][/tex]
[tex]\[ x^2 = \frac{3.9 \times 10^{-11}}{4.0 \times 10^{-2}} \][/tex]
[tex]\[ x^2 = 9.75 \times 10^{-10} \][/tex]
[tex]\[ x = \sqrt{9.75 \times 10^{-10}} \][/tex]
[tex]\[ x \approx 3.12 \times 10^{-5} \][/tex]
Let's round this to three decimal places:
[tex]\[ x \approx 0.000 \, 0312 \text{ M} \][/tex]
Now, we can fill in the ICE table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M} (A) & 0.000 \, \text{M} (B) \\ \hline \text{C (Change)} & -x & +0.000 \, 0312 \text{ M} (C) & +0.000 \, 0624 \text{ M} (D) \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 \text{ , 000} (E) & 0.000 \, 0624 \text{ M} (rounded to three decimal places) \\ \hline \end{tabular} \][/tex]
So, the correct values for the orange letters in the ICE table are:
A: [tex]\( 0.010 \)[/tex]
B: [tex]\( 0.000 \)[/tex]
C: [tex]\( 0.000 \, 0312 \)[/tex]
D: [tex]\( 0.000 \, 0624 \)[/tex]
E: [tex]\( 0.010 \)[/tex]
[tex]\[ \text{K}_{sp} (\text{CaF}_2) = 3.9 \times 10^{-11} \][/tex]
The dissociation of [tex]\( \text{CaF}_2 \)[/tex] in water is given by:
[tex]\[ \text{CaF}_2 (s) \rightleftharpoons \text{Ca}^{2+} (aq) + 2 \text{F}^- (aq) \][/tex]
Given that the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex] is [tex]\( 0.010 \, \text{M} \)[/tex] from the [tex]\( \text{Ca(NO}_3)_2 \)[/tex] salt, we'll build an ICE (Initial, Change, Equilibrium) table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M (A)} & 0.000 \, \text{M (B)} \\ \hline \text{C (Change)} & -x & +x & +2x \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 + x & 2x \\ \hline \end{tabular} \][/tex]
Next, we'll use the [tex]\( K_{sp} \)[/tex] expression to solve for [tex]\( x \)[/tex], which represents the molar solubility of [tex]\( \text{CaF}_2 \)[/tex]:
[tex]\[ \text{K}_{sp} = [\text{Ca}^{2+}] [\text{F}^-]^2 \][/tex]
Substituting the equilibrium concentrations into the [tex]\( K_{sp} \)[/tex] expression:
[tex]\[ 3.9 \times 10^{-11} = (0.010 + x) (2x)^2 \][/tex]
Since [tex]\( x \)[/tex] is very small compared to the initial concentration of [tex]\( \text{Ca}^{2+} \)[/tex], we can approximate [tex]\( 0.010 + x \approx 0.010 \)[/tex]:
[tex]\[ 3.9 \times 10^{-11} \approx (0.010) (2x)^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 0.010 \cdot 4x^2 \][/tex]
[tex]\[ 3.9 \times 10^{-11} = 4.0 \times 10^{-2} x^2 \][/tex]
[tex]\[ x^2 = \frac{3.9 \times 10^{-11}}{4.0 \times 10^{-2}} \][/tex]
[tex]\[ x^2 = 9.75 \times 10^{-10} \][/tex]
[tex]\[ x = \sqrt{9.75 \times 10^{-10}} \][/tex]
[tex]\[ x \approx 3.12 \times 10^{-5} \][/tex]
Let's round this to three decimal places:
[tex]\[ x \approx 0.000 \, 0312 \text{ M} \][/tex]
Now, we can fill in the ICE table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & $\text{CaF}_2 (s)$ & $\text{Ca}^{2+} (aq)$ & $2 \text{F}^- (aq)$ \\ \hline \text{I (Initial)} & \text{Solid} & 0.010 \, \text{M} (A) & 0.000 \, \text{M} (B) \\ \hline \text{C (Change)} & -x & +0.000 \, 0312 \text{ M} (C) & +0.000 \, 0624 \text{ M} (D) \\ \hline \text{E (Equilibrium)} & \text{Less solid} & 0.010 \text{ , 000} (E) & 0.000 \, 0624 \text{ M} (rounded to three decimal places) \\ \hline \end{tabular} \][/tex]
So, the correct values for the orange letters in the ICE table are:
A: [tex]\( 0.010 \)[/tex]
B: [tex]\( 0.000 \)[/tex]
C: [tex]\( 0.000 \, 0312 \)[/tex]
D: [tex]\( 0.000 \, 0624 \)[/tex]
E: [tex]\( 0.010 \)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.