Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To understand how the function [tex]\( g(x) = \sqrt{x} - 4 \)[/tex] is derived from the function [tex]\( f(x) = \sqrt{x} \)[/tex], we need to examine the adjustment made to the function.
1. Original Function Analysis:
The original function is [tex]\( f(x) = \sqrt{x} \)[/tex]. This function produces a graph that starts at the origin (0,0) and rises gradually to form a curve that heads upward to the right.
2. Form of the Transformed Function:
The transformed function is [tex]\( g(x) = \sqrt{x} - 4 \)[/tex]. The transformation involves subtracting 4 from the entire function [tex]\( \sqrt{x} \)[/tex].
3. Effect of Subtracting a Constant:
When a constant is subtracted from the function, it affects the y-values of the function directly:
- [tex]\( g(x) = \sqrt{x} - 4 \)[/tex] means that for every [tex]\( x \)[/tex], the corresponding [tex]\( y \)[/tex]-value in [tex]\( f(x) \)[/tex] is reduced by 4 units.
4. Graphical Interpretation:
- Subtracting 4 from the function [tex]\( f(x) \)[/tex] causes the entire graph to shift downward by 4 units because every point on the curve [tex]\( f(x) = \sqrt{x} \)[/tex] is moved down 4 units.
So, the operation of subtracting 4 from the function [tex]\( f(x) \)[/tex] results in a vertical shift downward by 4 units.
Therefore, the correct option is:
C) Translates the graph 4 units downward
1. Original Function Analysis:
The original function is [tex]\( f(x) = \sqrt{x} \)[/tex]. This function produces a graph that starts at the origin (0,0) and rises gradually to form a curve that heads upward to the right.
2. Form of the Transformed Function:
The transformed function is [tex]\( g(x) = \sqrt{x} - 4 \)[/tex]. The transformation involves subtracting 4 from the entire function [tex]\( \sqrt{x} \)[/tex].
3. Effect of Subtracting a Constant:
When a constant is subtracted from the function, it affects the y-values of the function directly:
- [tex]\( g(x) = \sqrt{x} - 4 \)[/tex] means that for every [tex]\( x \)[/tex], the corresponding [tex]\( y \)[/tex]-value in [tex]\( f(x) \)[/tex] is reduced by 4 units.
4. Graphical Interpretation:
- Subtracting 4 from the function [tex]\( f(x) \)[/tex] causes the entire graph to shift downward by 4 units because every point on the curve [tex]\( f(x) = \sqrt{x} \)[/tex] is moved down 4 units.
So, the operation of subtracting 4 from the function [tex]\( f(x) \)[/tex] results in a vertical shift downward by 4 units.
Therefore, the correct option is:
C) Translates the graph 4 units downward
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.