Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To understand how the function [tex]\( g(x) = \sqrt{x} - 4 \)[/tex] is derived from the function [tex]\( f(x) = \sqrt{x} \)[/tex], we need to examine the adjustment made to the function.
1. Original Function Analysis:
The original function is [tex]\( f(x) = \sqrt{x} \)[/tex]. This function produces a graph that starts at the origin (0,0) and rises gradually to form a curve that heads upward to the right.
2. Form of the Transformed Function:
The transformed function is [tex]\( g(x) = \sqrt{x} - 4 \)[/tex]. The transformation involves subtracting 4 from the entire function [tex]\( \sqrt{x} \)[/tex].
3. Effect of Subtracting a Constant:
When a constant is subtracted from the function, it affects the y-values of the function directly:
- [tex]\( g(x) = \sqrt{x} - 4 \)[/tex] means that for every [tex]\( x \)[/tex], the corresponding [tex]\( y \)[/tex]-value in [tex]\( f(x) \)[/tex] is reduced by 4 units.
4. Graphical Interpretation:
- Subtracting 4 from the function [tex]\( f(x) \)[/tex] causes the entire graph to shift downward by 4 units because every point on the curve [tex]\( f(x) = \sqrt{x} \)[/tex] is moved down 4 units.
So, the operation of subtracting 4 from the function [tex]\( f(x) \)[/tex] results in a vertical shift downward by 4 units.
Therefore, the correct option is:
C) Translates the graph 4 units downward
1. Original Function Analysis:
The original function is [tex]\( f(x) = \sqrt{x} \)[/tex]. This function produces a graph that starts at the origin (0,0) and rises gradually to form a curve that heads upward to the right.
2. Form of the Transformed Function:
The transformed function is [tex]\( g(x) = \sqrt{x} - 4 \)[/tex]. The transformation involves subtracting 4 from the entire function [tex]\( \sqrt{x} \)[/tex].
3. Effect of Subtracting a Constant:
When a constant is subtracted from the function, it affects the y-values of the function directly:
- [tex]\( g(x) = \sqrt{x} - 4 \)[/tex] means that for every [tex]\( x \)[/tex], the corresponding [tex]\( y \)[/tex]-value in [tex]\( f(x) \)[/tex] is reduced by 4 units.
4. Graphical Interpretation:
- Subtracting 4 from the function [tex]\( f(x) \)[/tex] causes the entire graph to shift downward by 4 units because every point on the curve [tex]\( f(x) = \sqrt{x} \)[/tex] is moved down 4 units.
So, the operation of subtracting 4 from the function [tex]\( f(x) \)[/tex] results in a vertical shift downward by 4 units.
Therefore, the correct option is:
C) Translates the graph 4 units downward
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.