Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's analyze the given data step-by-step to determine whether the motion of objects [tex]\(P\)[/tex] and [tex]\(Q\)[/tex] is uniform or non-uniform.
The table provides distances traveled by objects [tex]\(P\)[/tex] and [tex]\(Q\)[/tex] at various times. Here is the data extracted from the table:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Time} & \text{Distance traveled by } P \text{ (meters)} & \text{Distance traveled by } Q \text{ (meters)} \\ \hline 2:00 \, \text{am} & 10 & 12 \\ \hline 5:00 \, \text{am} & 20 & 10 \\ \hline 10:00 \, \text{am} & 30 & 23 \\ \hline 12:15 \, \text{pm} & 40 & 35 \\ \hline 10:19 \, \text{pm} & 80 & 37 \\ \hline 10:50 \, \text{pm} & 60 & 41 \\ \hline 11:00 \, \text{pm} & 70 & 44 \\ \hline \end{array} \][/tex]
### For Object P:
1. Compute the differences in distance traveled between consecutive time points:
- From 2:00 am to 5:00 am: [tex]\(20 - 10 = 10\)[/tex] meters
- From 5:00 am to 10:00 am: [tex]\(30 - 20 = 10\)[/tex] meters
- From 10:00 am to 12:15 pm: [tex]\(40 - 30 = 10\)[/tex] meters
- From 12:15 pm to 10:19 pm: [tex]\(80 - 40 = 40\)[/tex] meters
- From 10:19 pm to 10:50 pm: [tex]\(60 - 80 = -20\)[/tex] meters
- From 10:50 pm to 11:00 pm: [tex]\(70 - 60 = 10\)[/tex] meters
Differences: [tex]\([10, 10, 10, 40, -20, 10]\)[/tex]
2. Check for uniform motion by determining if all differences are equal:
- The differences in distances are not all equal.
Therefore, the motion of object [tex]\(P\)[/tex] is non-uniform.
### For Object Q:
1. Compute the differences in distance traveled between consecutive time points:
- From 2:00 am to 5:00 am: [tex]\(10 - 12 = -2\)[/tex] meters
- From 5:00 am to 10:00 am: [tex]\(23 - 10 = 13\)[/tex] meters
- From 10:00 am to 12:15 pm: [tex]\(35 - 23 = 12\)[/tex] meters
- From 12:15 pm to 10:19 pm: [tex]\(37 - 35 = 2\)[/tex] meters
- From 10:19 pm to 10:50 pm: [tex]\(41 - 37 = 4\)[/tex] meters
- From 10:50 pm to 11:00 pm: [tex]\(44 - 41 = 3\)[/tex] meters
Differences: [tex]\([-2, 13, 12, 2, 4, 3]\)[/tex]
2. Check for uniform motion by determining if all differences are equal:
- The differences in distances are not all equal.
Therefore, the motion of object [tex]\(Q\)[/tex] is non-uniform.
### Conclusion
After analyzing the distance differences:
- The differences for object [tex]\(P\)[/tex] are [tex]\([10, 10, 10, 40, -20, 10]\)[/tex], indicating non-uniform motion.
- The differences for object [tex]\(Q\)[/tex] are [tex]\([-2, 13, 12, 2, 4, 3]\)[/tex], indicating non-uniform motion.
Thus, both objects [tex]\(P\)[/tex] and [tex]\(Q\)[/tex] exhibit non-uniform motion.
The table provides distances traveled by objects [tex]\(P\)[/tex] and [tex]\(Q\)[/tex] at various times. Here is the data extracted from the table:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Time} & \text{Distance traveled by } P \text{ (meters)} & \text{Distance traveled by } Q \text{ (meters)} \\ \hline 2:00 \, \text{am} & 10 & 12 \\ \hline 5:00 \, \text{am} & 20 & 10 \\ \hline 10:00 \, \text{am} & 30 & 23 \\ \hline 12:15 \, \text{pm} & 40 & 35 \\ \hline 10:19 \, \text{pm} & 80 & 37 \\ \hline 10:50 \, \text{pm} & 60 & 41 \\ \hline 11:00 \, \text{pm} & 70 & 44 \\ \hline \end{array} \][/tex]
### For Object P:
1. Compute the differences in distance traveled between consecutive time points:
- From 2:00 am to 5:00 am: [tex]\(20 - 10 = 10\)[/tex] meters
- From 5:00 am to 10:00 am: [tex]\(30 - 20 = 10\)[/tex] meters
- From 10:00 am to 12:15 pm: [tex]\(40 - 30 = 10\)[/tex] meters
- From 12:15 pm to 10:19 pm: [tex]\(80 - 40 = 40\)[/tex] meters
- From 10:19 pm to 10:50 pm: [tex]\(60 - 80 = -20\)[/tex] meters
- From 10:50 pm to 11:00 pm: [tex]\(70 - 60 = 10\)[/tex] meters
Differences: [tex]\([10, 10, 10, 40, -20, 10]\)[/tex]
2. Check for uniform motion by determining if all differences are equal:
- The differences in distances are not all equal.
Therefore, the motion of object [tex]\(P\)[/tex] is non-uniform.
### For Object Q:
1. Compute the differences in distance traveled between consecutive time points:
- From 2:00 am to 5:00 am: [tex]\(10 - 12 = -2\)[/tex] meters
- From 5:00 am to 10:00 am: [tex]\(23 - 10 = 13\)[/tex] meters
- From 10:00 am to 12:15 pm: [tex]\(35 - 23 = 12\)[/tex] meters
- From 12:15 pm to 10:19 pm: [tex]\(37 - 35 = 2\)[/tex] meters
- From 10:19 pm to 10:50 pm: [tex]\(41 - 37 = 4\)[/tex] meters
- From 10:50 pm to 11:00 pm: [tex]\(44 - 41 = 3\)[/tex] meters
Differences: [tex]\([-2, 13, 12, 2, 4, 3]\)[/tex]
2. Check for uniform motion by determining if all differences are equal:
- The differences in distances are not all equal.
Therefore, the motion of object [tex]\(Q\)[/tex] is non-uniform.
### Conclusion
After analyzing the distance differences:
- The differences for object [tex]\(P\)[/tex] are [tex]\([10, 10, 10, 40, -20, 10]\)[/tex], indicating non-uniform motion.
- The differences for object [tex]\(Q\)[/tex] are [tex]\([-2, 13, 12, 2, 4, 3]\)[/tex], indicating non-uniform motion.
Thus, both objects [tex]\(P\)[/tex] and [tex]\(Q\)[/tex] exhibit non-uniform motion.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.