Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To analyze the exponential function [tex]\( y = 2^{-x} \)[/tex], we'll need to determine whether it represents growth or decay and then calculate the percentage rate of increase or decrease per unit of [tex]\( x \)[/tex].
### Step-by-Step Solution:
1. Identify whether the function represents growth or decay:
- The function is [tex]\( y = 2^{-x} \)[/tex]. This can also be written as [tex]\( y = \left(\frac{1}{2}\right)^x \)[/tex].
- Since [tex]\( \frac{1}{2} \)[/tex] (which is less than 1) is raised to the power of [tex]\( x \)[/tex], this represents an exponential decay function. Therefore, the function [tex]\( y = 2^{-x} \)[/tex] represents decay.
2. Determine the percentage rate of decrease per unit of [tex]\( x \)[/tex]:
- In an exponential function of the form [tex]\( y = a^x \)[/tex], where [tex]\( 0 < a < 1 \)[/tex], the base [tex]\( a = \frac{1}{2} \)[/tex] indicates decay.
- The general form for the percentage rate of decrease per unit [tex]\( x \)[/tex] is derived by expressing the base [tex]\( a \)[/tex] as [tex]\( a = 1 - r \)[/tex], where [tex]\( r \)[/tex] is the decay rate.
3. Convert the base to find the decay rate:
- Here, the base [tex]\( a = \frac{1}{2} \)[/tex]:
[tex]\[ \frac{1}{2} = 1 - r \][/tex]
- Solving for [tex]\( r \)[/tex]:
[tex]\[ r = 1 - \frac{1}{2} = \frac{1}{2} \][/tex]
4. Convert the decay rate into a percentage:
- Multiply [tex]\( r \)[/tex] by 100 to convert it to a percentage:
[tex]\[ \text{Percentage rate of decrease} = \frac{1}{2} \times 100\% = 50\% \][/tex]
Therefore, the function [tex]\( y = 2^{-x} \)[/tex] represents a decay, and the percentage rate of decrease per unit of [tex]\( x \)[/tex] is [tex]\( 50 \%\)[/tex].
### Step-by-Step Solution:
1. Identify whether the function represents growth or decay:
- The function is [tex]\( y = 2^{-x} \)[/tex]. This can also be written as [tex]\( y = \left(\frac{1}{2}\right)^x \)[/tex].
- Since [tex]\( \frac{1}{2} \)[/tex] (which is less than 1) is raised to the power of [tex]\( x \)[/tex], this represents an exponential decay function. Therefore, the function [tex]\( y = 2^{-x} \)[/tex] represents decay.
2. Determine the percentage rate of decrease per unit of [tex]\( x \)[/tex]:
- In an exponential function of the form [tex]\( y = a^x \)[/tex], where [tex]\( 0 < a < 1 \)[/tex], the base [tex]\( a = \frac{1}{2} \)[/tex] indicates decay.
- The general form for the percentage rate of decrease per unit [tex]\( x \)[/tex] is derived by expressing the base [tex]\( a \)[/tex] as [tex]\( a = 1 - r \)[/tex], where [tex]\( r \)[/tex] is the decay rate.
3. Convert the base to find the decay rate:
- Here, the base [tex]\( a = \frac{1}{2} \)[/tex]:
[tex]\[ \frac{1}{2} = 1 - r \][/tex]
- Solving for [tex]\( r \)[/tex]:
[tex]\[ r = 1 - \frac{1}{2} = \frac{1}{2} \][/tex]
4. Convert the decay rate into a percentage:
- Multiply [tex]\( r \)[/tex] by 100 to convert it to a percentage:
[tex]\[ \text{Percentage rate of decrease} = \frac{1}{2} \times 100\% = 50\% \][/tex]
Therefore, the function [tex]\( y = 2^{-x} \)[/tex] represents a decay, and the percentage rate of decrease per unit of [tex]\( x \)[/tex] is [tex]\( 50 \%\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.