Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the measure of the central angle in radians for an arc that measures [tex]\(125^\circ\)[/tex], we need to convert the angle from degrees to radians and then evaluate which range it falls into.
### Step-by-Step Solution:
1. Convert degrees to radians:
- We start with the given angle in degrees: [tex]\(125^\circ\)[/tex].
- To convert degrees to radians, we use the conversion factor [tex]\(\frac{\pi}{180}\)[/tex] radians per degree.
[tex]\[ \text{Angle in radians} = 125^\circ \times \frac{\pi}{180} \][/tex]
2. Calculate the angle in radians:
- Performing the conversion:
[tex]\[ 125^\circ \times \frac{\pi}{180} = \frac{125\pi}{180} \][/tex]
Simplify the fraction [tex]\(\frac{125}{180}\)[/tex]:
[tex]\[ \frac{125}{180} = \frac{25}{36} \][/tex]
So, the angle in radians is:
[tex]\[ \frac{25\pi}{36} \][/tex]
3. Determine the numerical value of the angle in radians:
- Let's evaluate the numerical value of [tex]\(\frac{25\pi}{36}\)[/tex]:
[tex]\[ \frac{25\pi}{36} \approx 2.181661564992912 \, \text{radians} \][/tex]
4. Evaluate which range the central angle falls into:
- The given radian ranges are:
- From [tex]\(0\)[/tex] to [tex]\(\frac{\pi}{2}\)[/tex] radians ([tex]\(0\)[/tex] to approx. 1.5708 radians)
- From [tex]\(\frac{\pi}{2}\)[/tex] to [tex]\(\pi\)[/tex] radians (approx. 1.5708 to 3.1416 radians)
- From [tex]\(\pi\)[/tex] to [tex]\(\frac{3\pi}{2}\)[/tex] radians (approx. 3.1416 to 4.7124 radians)
- From [tex]\(\frac{3\pi}{2}\)[/tex] to [tex]\(2\pi\)[/tex] radians (approx. 4.7124 to 6.2832 radians)
5. Place the calculated angle in the correct range:
- The calculated radian measure is approximately 2.1817 radians.
- Comparing this with the given ranges, we see that:
[tex]\[ \frac{\pi}{2} \leq 2.1817 < \pi \][/tex]
- Since [tex]\(\frac{\pi}{2}\)[/tex] is approximately 1.5708 and [tex]\(\pi\)[/tex] is approximately 3.1416, the angle [tex]\(2.1817\)[/tex] radians falls within the range:
[tex]\[ \frac{\pi}{2} \leq \text{angle} < \pi \][/tex]
Thus, the measure of the central angle in radians falls within the range:
[tex]\[ \boxed{\frac{\pi}{2} \text{ to } \pi \text{ radians}} \][/tex]
### Step-by-Step Solution:
1. Convert degrees to radians:
- We start with the given angle in degrees: [tex]\(125^\circ\)[/tex].
- To convert degrees to radians, we use the conversion factor [tex]\(\frac{\pi}{180}\)[/tex] radians per degree.
[tex]\[ \text{Angle in radians} = 125^\circ \times \frac{\pi}{180} \][/tex]
2. Calculate the angle in radians:
- Performing the conversion:
[tex]\[ 125^\circ \times \frac{\pi}{180} = \frac{125\pi}{180} \][/tex]
Simplify the fraction [tex]\(\frac{125}{180}\)[/tex]:
[tex]\[ \frac{125}{180} = \frac{25}{36} \][/tex]
So, the angle in radians is:
[tex]\[ \frac{25\pi}{36} \][/tex]
3. Determine the numerical value of the angle in radians:
- Let's evaluate the numerical value of [tex]\(\frac{25\pi}{36}\)[/tex]:
[tex]\[ \frac{25\pi}{36} \approx 2.181661564992912 \, \text{radians} \][/tex]
4. Evaluate which range the central angle falls into:
- The given radian ranges are:
- From [tex]\(0\)[/tex] to [tex]\(\frac{\pi}{2}\)[/tex] radians ([tex]\(0\)[/tex] to approx. 1.5708 radians)
- From [tex]\(\frac{\pi}{2}\)[/tex] to [tex]\(\pi\)[/tex] radians (approx. 1.5708 to 3.1416 radians)
- From [tex]\(\pi\)[/tex] to [tex]\(\frac{3\pi}{2}\)[/tex] radians (approx. 3.1416 to 4.7124 radians)
- From [tex]\(\frac{3\pi}{2}\)[/tex] to [tex]\(2\pi\)[/tex] radians (approx. 4.7124 to 6.2832 radians)
5. Place the calculated angle in the correct range:
- The calculated radian measure is approximately 2.1817 radians.
- Comparing this with the given ranges, we see that:
[tex]\[ \frac{\pi}{2} \leq 2.1817 < \pi \][/tex]
- Since [tex]\(\frac{\pi}{2}\)[/tex] is approximately 1.5708 and [tex]\(\pi\)[/tex] is approximately 3.1416, the angle [tex]\(2.1817\)[/tex] radians falls within the range:
[tex]\[ \frac{\pi}{2} \leq \text{angle} < \pi \][/tex]
Thus, the measure of the central angle in radians falls within the range:
[tex]\[ \boxed{\frac{\pi}{2} \text{ to } \pi \text{ radians}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.