At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the partial differential equation [tex]\( u_x + u_y = 1 \)[/tex] using the change of variables [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], let's follow these steps:
1. Introduce the change of variables:
Let [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex].
2. Express [tex]\( u \)[/tex] as a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex]:
Assume [tex]\( u \)[/tex] is now a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex], say [tex]\( u(x,y) = v(s,t) \)[/tex].
3. Calculate the partial derivatives using the chain rule:
- For [tex]\( u_x \)[/tex]:
[tex]\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial x} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial x} = 1, \quad \frac{\partial t}{\partial x} = 1 \][/tex]
So,
[tex]\[ u_x = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot 1 = \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \][/tex]
- For [tex]\( u_y \)[/tex]:
[tex]\[ \frac{\partial u}{\partial y} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial y} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial y} = 1, \quad \frac{\partial t}{\partial y} = -1 \][/tex]
So,
[tex]\[ u_y = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot (-1) = \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \][/tex]
4. Substitute the derivatives into the PDE [tex]\( u_x + u_y = 1 \)[/tex]:
[tex]\[ u_x + u_y = \left( \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \right) + \left( \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \right) = 1 \][/tex]
Simplifying, we get:
[tex]\[ 2 \frac{\partial v}{\partial s} = 1 \][/tex]
[tex]\[ \frac{\partial v}{\partial s} = \frac{1}{2} \][/tex]
5. Integrate with respect to [tex]\( s \)[/tex]:
[tex]\[ v(s,t) = \frac{1}{2} s + g(t) \][/tex]
where [tex]\( g(t) \)[/tex] is an arbitrary function of [tex]\( t \)[/tex].
6. Express [tex]\( u \)[/tex] in terms of the original variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Recall [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], so:
[tex]\[ u(x,y) = v(s,t) = \frac{1}{2} (x + y) + g(x - y) \][/tex]
The general solution to the partial differential equation [tex]\( u_x + u_y = 1 \)[/tex] is:
[tex]\[ u(x,y) = \frac{1}{2} (x + y) + g(x - y) \][/tex]
where [tex]\( g \)[/tex] is an arbitrary function of [tex]\( (x - y) \)[/tex].
1. Introduce the change of variables:
Let [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex].
2. Express [tex]\( u \)[/tex] as a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex]:
Assume [tex]\( u \)[/tex] is now a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex], say [tex]\( u(x,y) = v(s,t) \)[/tex].
3. Calculate the partial derivatives using the chain rule:
- For [tex]\( u_x \)[/tex]:
[tex]\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial x} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial x} = 1, \quad \frac{\partial t}{\partial x} = 1 \][/tex]
So,
[tex]\[ u_x = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot 1 = \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \][/tex]
- For [tex]\( u_y \)[/tex]:
[tex]\[ \frac{\partial u}{\partial y} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial y} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial y} = 1, \quad \frac{\partial t}{\partial y} = -1 \][/tex]
So,
[tex]\[ u_y = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot (-1) = \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \][/tex]
4. Substitute the derivatives into the PDE [tex]\( u_x + u_y = 1 \)[/tex]:
[tex]\[ u_x + u_y = \left( \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \right) + \left( \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \right) = 1 \][/tex]
Simplifying, we get:
[tex]\[ 2 \frac{\partial v}{\partial s} = 1 \][/tex]
[tex]\[ \frac{\partial v}{\partial s} = \frac{1}{2} \][/tex]
5. Integrate with respect to [tex]\( s \)[/tex]:
[tex]\[ v(s,t) = \frac{1}{2} s + g(t) \][/tex]
where [tex]\( g(t) \)[/tex] is an arbitrary function of [tex]\( t \)[/tex].
6. Express [tex]\( u \)[/tex] in terms of the original variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Recall [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], so:
[tex]\[ u(x,y) = v(s,t) = \frac{1}{2} (x + y) + g(x - y) \][/tex]
The general solution to the partial differential equation [tex]\( u_x + u_y = 1 \)[/tex] is:
[tex]\[ u(x,y) = \frac{1}{2} (x + y) + g(x - y) \][/tex]
where [tex]\( g \)[/tex] is an arbitrary function of [tex]\( (x - y) \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.