Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the partial differential equation [tex]\( u_x + u_y = 1 \)[/tex] using the change of variables [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], let's follow these steps:
1. Introduce the change of variables:
Let [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex].
2. Express [tex]\( u \)[/tex] as a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex]:
Assume [tex]\( u \)[/tex] is now a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex], say [tex]\( u(x,y) = v(s,t) \)[/tex].
3. Calculate the partial derivatives using the chain rule:
- For [tex]\( u_x \)[/tex]:
[tex]\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial x} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial x} = 1, \quad \frac{\partial t}{\partial x} = 1 \][/tex]
So,
[tex]\[ u_x = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot 1 = \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \][/tex]
- For [tex]\( u_y \)[/tex]:
[tex]\[ \frac{\partial u}{\partial y} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial y} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial y} = 1, \quad \frac{\partial t}{\partial y} = -1 \][/tex]
So,
[tex]\[ u_y = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot (-1) = \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \][/tex]
4. Substitute the derivatives into the PDE [tex]\( u_x + u_y = 1 \)[/tex]:
[tex]\[ u_x + u_y = \left( \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \right) + \left( \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \right) = 1 \][/tex]
Simplifying, we get:
[tex]\[ 2 \frac{\partial v}{\partial s} = 1 \][/tex]
[tex]\[ \frac{\partial v}{\partial s} = \frac{1}{2} \][/tex]
5. Integrate with respect to [tex]\( s \)[/tex]:
[tex]\[ v(s,t) = \frac{1}{2} s + g(t) \][/tex]
where [tex]\( g(t) \)[/tex] is an arbitrary function of [tex]\( t \)[/tex].
6. Express [tex]\( u \)[/tex] in terms of the original variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Recall [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], so:
[tex]\[ u(x,y) = v(s,t) = \frac{1}{2} (x + y) + g(x - y) \][/tex]
The general solution to the partial differential equation [tex]\( u_x + u_y = 1 \)[/tex] is:
[tex]\[ u(x,y) = \frac{1}{2} (x + y) + g(x - y) \][/tex]
where [tex]\( g \)[/tex] is an arbitrary function of [tex]\( (x - y) \)[/tex].
1. Introduce the change of variables:
Let [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex].
2. Express [tex]\( u \)[/tex] as a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex]:
Assume [tex]\( u \)[/tex] is now a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex], say [tex]\( u(x,y) = v(s,t) \)[/tex].
3. Calculate the partial derivatives using the chain rule:
- For [tex]\( u_x \)[/tex]:
[tex]\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial x} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial x} = 1, \quad \frac{\partial t}{\partial x} = 1 \][/tex]
So,
[tex]\[ u_x = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot 1 = \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \][/tex]
- For [tex]\( u_y \)[/tex]:
[tex]\[ \frac{\partial u}{\partial y} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial y} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial y} = 1, \quad \frac{\partial t}{\partial y} = -1 \][/tex]
So,
[tex]\[ u_y = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot (-1) = \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \][/tex]
4. Substitute the derivatives into the PDE [tex]\( u_x + u_y = 1 \)[/tex]:
[tex]\[ u_x + u_y = \left( \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \right) + \left( \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \right) = 1 \][/tex]
Simplifying, we get:
[tex]\[ 2 \frac{\partial v}{\partial s} = 1 \][/tex]
[tex]\[ \frac{\partial v}{\partial s} = \frac{1}{2} \][/tex]
5. Integrate with respect to [tex]\( s \)[/tex]:
[tex]\[ v(s,t) = \frac{1}{2} s + g(t) \][/tex]
where [tex]\( g(t) \)[/tex] is an arbitrary function of [tex]\( t \)[/tex].
6. Express [tex]\( u \)[/tex] in terms of the original variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Recall [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], so:
[tex]\[ u(x,y) = v(s,t) = \frac{1}{2} (x + y) + g(x - y) \][/tex]
The general solution to the partial differential equation [tex]\( u_x + u_y = 1 \)[/tex] is:
[tex]\[ u(x,y) = \frac{1}{2} (x + y) + g(x - y) \][/tex]
where [tex]\( g \)[/tex] is an arbitrary function of [tex]\( (x - y) \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.