Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the partial differential equation [tex]\( u_x + u_y = 1 \)[/tex] using the change of variables [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], let's follow these steps:
1. Introduce the change of variables:
Let [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex].
2. Express [tex]\( u \)[/tex] as a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex]:
Assume [tex]\( u \)[/tex] is now a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex], say [tex]\( u(x,y) = v(s,t) \)[/tex].
3. Calculate the partial derivatives using the chain rule:
- For [tex]\( u_x \)[/tex]:
[tex]\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial x} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial x} = 1, \quad \frac{\partial t}{\partial x} = 1 \][/tex]
So,
[tex]\[ u_x = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot 1 = \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \][/tex]
- For [tex]\( u_y \)[/tex]:
[tex]\[ \frac{\partial u}{\partial y} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial y} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial y} = 1, \quad \frac{\partial t}{\partial y} = -1 \][/tex]
So,
[tex]\[ u_y = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot (-1) = \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \][/tex]
4. Substitute the derivatives into the PDE [tex]\( u_x + u_y = 1 \)[/tex]:
[tex]\[ u_x + u_y = \left( \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \right) + \left( \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \right) = 1 \][/tex]
Simplifying, we get:
[tex]\[ 2 \frac{\partial v}{\partial s} = 1 \][/tex]
[tex]\[ \frac{\partial v}{\partial s} = \frac{1}{2} \][/tex]
5. Integrate with respect to [tex]\( s \)[/tex]:
[tex]\[ v(s,t) = \frac{1}{2} s + g(t) \][/tex]
where [tex]\( g(t) \)[/tex] is an arbitrary function of [tex]\( t \)[/tex].
6. Express [tex]\( u \)[/tex] in terms of the original variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Recall [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], so:
[tex]\[ u(x,y) = v(s,t) = \frac{1}{2} (x + y) + g(x - y) \][/tex]
The general solution to the partial differential equation [tex]\( u_x + u_y = 1 \)[/tex] is:
[tex]\[ u(x,y) = \frac{1}{2} (x + y) + g(x - y) \][/tex]
where [tex]\( g \)[/tex] is an arbitrary function of [tex]\( (x - y) \)[/tex].
1. Introduce the change of variables:
Let [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex].
2. Express [tex]\( u \)[/tex] as a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex]:
Assume [tex]\( u \)[/tex] is now a function of [tex]\( s \)[/tex] and [tex]\( t \)[/tex], say [tex]\( u(x,y) = v(s,t) \)[/tex].
3. Calculate the partial derivatives using the chain rule:
- For [tex]\( u_x \)[/tex]:
[tex]\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial x} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial x} = 1, \quad \frac{\partial t}{\partial x} = 1 \][/tex]
So,
[tex]\[ u_x = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot 1 = \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \][/tex]
- For [tex]\( u_y \)[/tex]:
[tex]\[ \frac{\partial u}{\partial y} = \frac{\partial v}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial y} \][/tex]
Since [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], we have:
[tex]\[ \frac{\partial s}{\partial y} = 1, \quad \frac{\partial t}{\partial y} = -1 \][/tex]
So,
[tex]\[ u_y = \frac{\partial v}{\partial s} \cdot 1 + \frac{\partial v}{\partial t} \cdot (-1) = \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \][/tex]
4. Substitute the derivatives into the PDE [tex]\( u_x + u_y = 1 \)[/tex]:
[tex]\[ u_x + u_y = \left( \frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} \right) + \left( \frac{\partial v}{\partial s} - \frac{\partial v}{\partial t} \right) = 1 \][/tex]
Simplifying, we get:
[tex]\[ 2 \frac{\partial v}{\partial s} = 1 \][/tex]
[tex]\[ \frac{\partial v}{\partial s} = \frac{1}{2} \][/tex]
5. Integrate with respect to [tex]\( s \)[/tex]:
[tex]\[ v(s,t) = \frac{1}{2} s + g(t) \][/tex]
where [tex]\( g(t) \)[/tex] is an arbitrary function of [tex]\( t \)[/tex].
6. Express [tex]\( u \)[/tex] in terms of the original variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Recall [tex]\( s = x + y \)[/tex] and [tex]\( t = x - y \)[/tex], so:
[tex]\[ u(x,y) = v(s,t) = \frac{1}{2} (x + y) + g(x - y) \][/tex]
The general solution to the partial differential equation [tex]\( u_x + u_y = 1 \)[/tex] is:
[tex]\[ u(x,y) = \frac{1}{2} (x + y) + g(x - y) \][/tex]
where [tex]\( g \)[/tex] is an arbitrary function of [tex]\( (x - y) \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.