Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the focus and the directrix of the given parabola [tex]\( y = -\frac{1}{12}(x-4)^2 + 2 \)[/tex], we start by identifying key information from the standard form of a parabola.
The given equation [tex]\( y = -\frac{1}{12}(x-4)^2 + 2 \)[/tex] is in the vertex form [tex]\( y = a(x-h)^2 + k \)[/tex], where [tex]\((h, k)\)[/tex] represents the vertex of the parabola.
From the equation:
- [tex]\( h = 4 \)[/tex]
- [tex]\( k = 2 \)[/tex]
- [tex]\( a = -\frac{1}{12} \)[/tex]
The vertex of the parabola, therefore, is at [tex]\((4, 2)\)[/tex].
Next, we determine the coordinates of the focus and the equation of the directrix. For a parabola in the form [tex]\( y = a(x-h)^2 + k \)[/tex]:
1. The focus of the parabola is given by the point [tex]\((h, k + \frac{1}{4a})\)[/tex].
2. The directrix is given by the line [tex]\( y = k - \frac{1}{4a} \)[/tex].
We proceed by calculating each:
Focus:
To find the y-coordinate of the focus:
[tex]\[ k + \frac{1}{4a} = 2 + \frac{1}{4 \cdot -\frac{1}{12}} = 2 + \frac{1}{-\frac{1}{3}} = 2 - 3 = -1 \][/tex]
Therefore, the coordinates of the focus are:
[tex]\[ (h, k + \frac{1}{4a}) = (4, -1) \][/tex]
Directrix:
To find the y-coordinate of the directrix:
[tex]\[ y = k - \frac{1}{4a} = 2 - \frac{1}{4 \cdot -\frac{1}{12}} = 2 - \frac{1}{-\frac{1}{3}} = 2 + 3 = 5 \][/tex]
Therefore, the equation of the directrix is:
[tex]\[ y = k - \frac{1}{4a} = 5 \][/tex]
Putting it all together, we find:
- The focus of the parabola is [tex]\((4, -1)\)[/tex],
- The directrix is [tex]\( y = 5 \)[/tex].
Thus, the correct answer is:
C) Focus [tex]\((4, -1)\)[/tex], directrix is [tex]\( y = 5 \)[/tex]
The given equation [tex]\( y = -\frac{1}{12}(x-4)^2 + 2 \)[/tex] is in the vertex form [tex]\( y = a(x-h)^2 + k \)[/tex], where [tex]\((h, k)\)[/tex] represents the vertex of the parabola.
From the equation:
- [tex]\( h = 4 \)[/tex]
- [tex]\( k = 2 \)[/tex]
- [tex]\( a = -\frac{1}{12} \)[/tex]
The vertex of the parabola, therefore, is at [tex]\((4, 2)\)[/tex].
Next, we determine the coordinates of the focus and the equation of the directrix. For a parabola in the form [tex]\( y = a(x-h)^2 + k \)[/tex]:
1. The focus of the parabola is given by the point [tex]\((h, k + \frac{1}{4a})\)[/tex].
2. The directrix is given by the line [tex]\( y = k - \frac{1}{4a} \)[/tex].
We proceed by calculating each:
Focus:
To find the y-coordinate of the focus:
[tex]\[ k + \frac{1}{4a} = 2 + \frac{1}{4 \cdot -\frac{1}{12}} = 2 + \frac{1}{-\frac{1}{3}} = 2 - 3 = -1 \][/tex]
Therefore, the coordinates of the focus are:
[tex]\[ (h, k + \frac{1}{4a}) = (4, -1) \][/tex]
Directrix:
To find the y-coordinate of the directrix:
[tex]\[ y = k - \frac{1}{4a} = 2 - \frac{1}{4 \cdot -\frac{1}{12}} = 2 - \frac{1}{-\frac{1}{3}} = 2 + 3 = 5 \][/tex]
Therefore, the equation of the directrix is:
[tex]\[ y = k - \frac{1}{4a} = 5 \][/tex]
Putting it all together, we find:
- The focus of the parabola is [tex]\((4, -1)\)[/tex],
- The directrix is [tex]\( y = 5 \)[/tex].
Thus, the correct answer is:
C) Focus [tex]\((4, -1)\)[/tex], directrix is [tex]\( y = 5 \)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.