Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which point lies on the circle represented by the equation [tex]\((x + 5)^2 + (y - 9)^2 = 8^2\)[/tex], we need to calculate the squared distance of each point from the center of the circle and compare it to the square of the circle's radius.
The equation of the circle is [tex]\((x + 5)^2 + (y - 9)^2 = 8^2\)[/tex].
First, identify the center and radius of the circle:
- Center of the circle [tex]\((h, k)\)[/tex] is [tex]\((-5, 9)\)[/tex]
- Radius [tex]\(r\)[/tex] is [tex]\(8\)[/tex]
### Check each point:
1. Point (0, 8):
[tex]\[ (0 + 5)^2 + (8 - 9)^2 = 5^2 + (-1)^2 = 25 + 1 = 26 \][/tex]
2. Point (13, -9):
[tex]\[ (13 + 5)^2 + (-9 - 9)^2 = 18^2 + (-18)^2 = 324 + 324 = 648 \][/tex]
3. Point (-5, 1):
[tex]\[ (-5 + 5)^2 + (1 - 9)^2 = 0^2 + (-8)^2 = 0 + 64 = 64 \][/tex]
4. Point (3, 17):
[tex]\[ (3 + 5)^2 + (17 - 9)^2 = 8^2 + 8^2 = 64 + 64 = 128 \][/tex]
The squared radius of the circle is:
[tex]\[ 8^2 = 64 \][/tex]
Now let's compare each calculated squared distance with the squared radius:
- For [tex]\((0, 8)\)[/tex], the squared distance is [tex]\(26 \neq 64\)[/tex].
- For [tex]\((13, -9)\)[/tex], the squared distance is [tex]\(648 \neq 64\)[/tex].
- For [tex]\((-5, 1)\)[/tex], the squared distance is [tex]\(64 = 64\)[/tex].
- For [tex]\((3, 17)\)[/tex], the squared distance is [tex]\(128 \neq 64\)[/tex].
Only the point [tex]\((-5, 1)\)[/tex] satisfies the equation of the circle.
Therefore, the correct answer is:
C. [tex]\((-5, 1)\)[/tex]
The equation of the circle is [tex]\((x + 5)^2 + (y - 9)^2 = 8^2\)[/tex].
First, identify the center and radius of the circle:
- Center of the circle [tex]\((h, k)\)[/tex] is [tex]\((-5, 9)\)[/tex]
- Radius [tex]\(r\)[/tex] is [tex]\(8\)[/tex]
### Check each point:
1. Point (0, 8):
[tex]\[ (0 + 5)^2 + (8 - 9)^2 = 5^2 + (-1)^2 = 25 + 1 = 26 \][/tex]
2. Point (13, -9):
[tex]\[ (13 + 5)^2 + (-9 - 9)^2 = 18^2 + (-18)^2 = 324 + 324 = 648 \][/tex]
3. Point (-5, 1):
[tex]\[ (-5 + 5)^2 + (1 - 9)^2 = 0^2 + (-8)^2 = 0 + 64 = 64 \][/tex]
4. Point (3, 17):
[tex]\[ (3 + 5)^2 + (17 - 9)^2 = 8^2 + 8^2 = 64 + 64 = 128 \][/tex]
The squared radius of the circle is:
[tex]\[ 8^2 = 64 \][/tex]
Now let's compare each calculated squared distance with the squared radius:
- For [tex]\((0, 8)\)[/tex], the squared distance is [tex]\(26 \neq 64\)[/tex].
- For [tex]\((13, -9)\)[/tex], the squared distance is [tex]\(648 \neq 64\)[/tex].
- For [tex]\((-5, 1)\)[/tex], the squared distance is [tex]\(64 = 64\)[/tex].
- For [tex]\((3, 17)\)[/tex], the squared distance is [tex]\(128 \neq 64\)[/tex].
Only the point [tex]\((-5, 1)\)[/tex] satisfies the equation of the circle.
Therefore, the correct answer is:
C. [tex]\((-5, 1)\)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.