Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

What is the equation of the line that is parallel to [tex] y = -5x + 6 [/tex] and passes through the point [tex] (-4, -1) [/tex]?

A. [tex] y = -5x - 19 [/tex]
B. [tex] y = -5x + 21 [/tex]
C. [tex] y = -5x + 19 [/tex]
D. [tex] y = -5x - 21 [/tex]


Sagot :

To find the equation of a line that is parallel to [tex]\( y = -5x + 6 \)[/tex] and passes through the point [tex]\( (-4, -1) \)[/tex], follow these steps:

1. Identify the slope of the given line.
- The given line is [tex]\( y = -5x + 6 \)[/tex].
- For a line in the slope-intercept form [tex]\( y = mx + b \)[/tex], the slope is [tex]\( m \)[/tex].
- Therefore, the slope of the given line is [tex]\( -5 \)[/tex].

2. Recognize that parallel lines have the same slope.
- Any line parallel to [tex]\( y = -5x + 6 \)[/tex] will also have a slope of [tex]\( -5 \)[/tex].

3. Use the point-slope form to write the equation of the new line.
- The point-slope form of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Here, [tex]\( m \)[/tex] is the slope and [tex]\( (x_1, y_1) \)[/tex] is the point through which the line passes.
- For our case, [tex]\( m = -5 \)[/tex] and the point is [tex]\( (-4, -1) \)[/tex].

4. Substitute the slope and the point into the point-slope form:
[tex]\[ y - (-1) = -5(x - (-4)) \][/tex]
- Simplify the equation:
[tex]\[ y + 1 = -5(x + 4) \][/tex]

5. Expand and simplify to get the equation into slope-intercept form:
- Distribute the slope on the right side:
[tex]\[ y + 1 = -5x - 20 \][/tex]
- Subtract 1 from both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = -5x - 21 \][/tex]

Therefore, the equation of the line that is parallel to [tex]\( y = -5x + 6 \)[/tex] and passes through the point [tex]\( (-4, -1) \)[/tex] is [tex]\( y = -5x - 21 \)[/tex].

So, the correct answer is:

D. [tex]\( y = -5x - 21 \)[/tex]