Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the solution region for the given system of inequalities, let's analyze each inequality separately.
### Inequality 1: [tex]\(2x + y > 2\)[/tex]
1. Rewrite the inequality as an equation to understand the boundary: [tex]\(2x + y = 2\)[/tex].
2. Find the intercepts:
- When [tex]\(x = 0\)[/tex]: [tex]\(2(0) + y = 2 \Rightarrow y = 2\)[/tex].
- When [tex]\(y = 0\)[/tex]: [tex]\(2x + 0 = 2 \Rightarrow x = 1\)[/tex].
3. Plot the line through points [tex]\((0, 2)\)[/tex] and [tex]\((1, 0)\)[/tex].
4. Determine the region where [tex]\(2x + y > 2\)[/tex]: substitute a test point not on the line, like [tex]\((0, 0)\)[/tex]:
- [tex]\(2(0) + 0 = 0 < 2\)[/tex], so the region above the line is the solution.
### Inequality 2: [tex]\(6x + 3y < 12\)[/tex]
1. Rewrite the inequality as an equation to understand the boundary: [tex]\(6x + 3y = 12\)[/tex].
2. Simplify the equation: [tex]\(2x + y = 4\)[/tex].
3. Find the intercepts:
- When [tex]\(x = 0\)[/tex]: [tex]\(2(0) + y = 4 \Rightarrow y = 4\)[/tex].
- When [tex]\(y = 0\)[/tex]: [tex]\(2x + 0 = 4 \Rightarrow x = 2\)[/tex].
4. Plot the line through points [tex]\((0, 4)\)[/tex] and [tex]\((2, 0)\)[/tex].
5. Determine the region where [tex]\(2x + y < 4\)[/tex]: substitute a test point not on the line, like [tex]\((0, 0)\)[/tex]:
- [tex]\(2(0) + 0 = 0 < 4\)[/tex], so the region below the line is the solution.
### Combine the Inequalities
To find the solution to the system, we need the region where both conditions are satisfied simultaneously:
1. The region above the line [tex]\(2x + y = 2\)[/tex].
2. The region below the line [tex]\(2x + y = 4\)[/tex].
Feasible Region:
- The feasible region lies between the two lines [tex]\(2x + y = 2\)[/tex] and [tex]\(2x + y = 4\)[/tex], including the areas above the first line but below the second line.
- Since both lines are parallel, the feasible region is a strip between these two lines.
Since we established the solution graphically, we can say:
True. This graph represents the solution region for the given system of linear inequalities. The shaded region (if plotted correctly) would indeed show the strip between the lines [tex]\(2x + y = 2\)[/tex] and [tex]\(2x + y = 4\)[/tex].
### Inequality 1: [tex]\(2x + y > 2\)[/tex]
1. Rewrite the inequality as an equation to understand the boundary: [tex]\(2x + y = 2\)[/tex].
2. Find the intercepts:
- When [tex]\(x = 0\)[/tex]: [tex]\(2(0) + y = 2 \Rightarrow y = 2\)[/tex].
- When [tex]\(y = 0\)[/tex]: [tex]\(2x + 0 = 2 \Rightarrow x = 1\)[/tex].
3. Plot the line through points [tex]\((0, 2)\)[/tex] and [tex]\((1, 0)\)[/tex].
4. Determine the region where [tex]\(2x + y > 2\)[/tex]: substitute a test point not on the line, like [tex]\((0, 0)\)[/tex]:
- [tex]\(2(0) + 0 = 0 < 2\)[/tex], so the region above the line is the solution.
### Inequality 2: [tex]\(6x + 3y < 12\)[/tex]
1. Rewrite the inequality as an equation to understand the boundary: [tex]\(6x + 3y = 12\)[/tex].
2. Simplify the equation: [tex]\(2x + y = 4\)[/tex].
3. Find the intercepts:
- When [tex]\(x = 0\)[/tex]: [tex]\(2(0) + y = 4 \Rightarrow y = 4\)[/tex].
- When [tex]\(y = 0\)[/tex]: [tex]\(2x + 0 = 4 \Rightarrow x = 2\)[/tex].
4. Plot the line through points [tex]\((0, 4)\)[/tex] and [tex]\((2, 0)\)[/tex].
5. Determine the region where [tex]\(2x + y < 4\)[/tex]: substitute a test point not on the line, like [tex]\((0, 0)\)[/tex]:
- [tex]\(2(0) + 0 = 0 < 4\)[/tex], so the region below the line is the solution.
### Combine the Inequalities
To find the solution to the system, we need the region where both conditions are satisfied simultaneously:
1. The region above the line [tex]\(2x + y = 2\)[/tex].
2. The region below the line [tex]\(2x + y = 4\)[/tex].
Feasible Region:
- The feasible region lies between the two lines [tex]\(2x + y = 2\)[/tex] and [tex]\(2x + y = 4\)[/tex], including the areas above the first line but below the second line.
- Since both lines are parallel, the feasible region is a strip between these two lines.
Since we established the solution graphically, we can say:
True. This graph represents the solution region for the given system of linear inequalities. The shaded region (if plotted correctly) would indeed show the strip between the lines [tex]\(2x + y = 2\)[/tex] and [tex]\(2x + y = 4\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.