Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To approximate the value of [tex]\(\log_b 18\)[/tex] using the given values [tex]\(\log_b 6 = 0.921\)[/tex] and [tex]\(\log_b 3 \approx 0.565\)[/tex], we can utilize the properties of logarithms, particularly the property that states the logarithm of a product is the sum of the logarithms of the factors.
Given:
[tex]\[ \log_b 6 = 0.921 \][/tex]
and
[tex]\[ \log_b 3 \approx 0.565 \][/tex]
We need to find [tex]\(\log_b 18\)[/tex]. Notice that [tex]\(18\)[/tex] can be expressed as the product of [tex]\(6\)[/tex] and [tex]\(3\)[/tex]:
[tex]\[ 18 = 6 \times 3 \][/tex]
Using the product property of logarithms, we can express [tex]\(\log_b 18\)[/tex] as:
[tex]\[ \log_b 18 = \log_b (6 \times 3) \][/tex]
According to the product rule for logarithms:
[tex]\[ \log_b (6 \times 3) = \log_b 6 + \log_b 3 \][/tex]
Substituting the given values:
[tex]\[ \log_b 18 = \log_b 6 + \log_b 3 = 0.921 + 0.565 \][/tex]
Adding these values together, we obtain:
[tex]\[ 0.921 + 0.565 = 1.486 \][/tex]
Therefore, the approximate value of [tex]\(\log_b 18\)[/tex] is:
[tex]\[ \log_b 18 \approx 1.486 \][/tex]
Given:
[tex]\[ \log_b 6 = 0.921 \][/tex]
and
[tex]\[ \log_b 3 \approx 0.565 \][/tex]
We need to find [tex]\(\log_b 18\)[/tex]. Notice that [tex]\(18\)[/tex] can be expressed as the product of [tex]\(6\)[/tex] and [tex]\(3\)[/tex]:
[tex]\[ 18 = 6 \times 3 \][/tex]
Using the product property of logarithms, we can express [tex]\(\log_b 18\)[/tex] as:
[tex]\[ \log_b 18 = \log_b (6 \times 3) \][/tex]
According to the product rule for logarithms:
[tex]\[ \log_b (6 \times 3) = \log_b 6 + \log_b 3 \][/tex]
Substituting the given values:
[tex]\[ \log_b 18 = \log_b 6 + \log_b 3 = 0.921 + 0.565 \][/tex]
Adding these values together, we obtain:
[tex]\[ 0.921 + 0.565 = 1.486 \][/tex]
Therefore, the approximate value of [tex]\(\log_b 18\)[/tex] is:
[tex]\[ \log_b 18 \approx 1.486 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.