Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Which statements are true about the linear inequality [tex]y \ \textgreater \ \frac{3}{4} x - 2[/tex]? Select three options.

A. The slope of the line is -2.
B. The graph of [tex]y = \frac{3}{4}x - 2[/tex] is a dashed line.
C. The area below the line is shaded.
D. One solution to the inequality is (0, 0).
E. The graph intercepts the y-axis at (0, -2).

Sagot :

Let's analyze the given linear inequality [tex]\( y > \frac{3}{4} x - 2 \)[/tex].

1. The slope of the line is -2.
- The slope of a line in the equation [tex]\( y = mx + b \)[/tex] is given by the coefficient of [tex]\( x \)[/tex], which in this case is [tex]\( \frac{3}{4} \)[/tex]. Therefore, the slope of the line is [tex]\( \frac{3}{4} \)[/tex], not -2. This statement is false.

2. The graph of [tex]\( y = \frac{3}{4} x - 2 \)[/tex] is a dashed line.
- When graphing a linear inequality that uses the "greater than" (>) symbol, the boundary line [tex]\( y = \frac{3}{4} x - 2 \)[/tex] is drawn as a dashed line to indicate that points on the line are not included in the solution. Thus, this statement is true.

3. The area below the line is shaded.
- For [tex]\( y > \frac{3}{4} x - 2 \)[/tex], the shaded region consists of all points above the line [tex]\( y = \frac{3}{4} x - 2 \)[/tex] because we are looking for the [tex]\( y \)[/tex]-values that are greater than those on the line. Therefore, this statement is false.

4. One solution to the inequality is [tex]\( (0, 0) \)[/tex].
- To verify if [tex]\( (0, 0) \)[/tex] is a solution, we substitute [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex] into the inequality [tex]\( y > \frac{3}{4} x - 2 \)[/tex]:
[tex]\[ 0 > \frac{3}{4}(0) - 2 \][/tex]
[tex]\[ 0 > -2 \][/tex]
This inequality is true. Therefore, [tex]\( (0, 0) \)[/tex] is indeed a solution of the inequality. This statement is true.

5. The graph intercepts the [tex]\( y \)[/tex]-axis at [tex]\( (0, -2) \)[/tex].
- To find the [tex]\( y \)[/tex]-intercept of the line [tex]\( y = \frac{3}{4} x - 2 \)[/tex], we set [tex]\( x = 0 \)[/tex]:
[tex]\[ y = \frac{3}{4}(0) - 2 \][/tex]
[tex]\[ y = -2 \][/tex]
Therefore, the [tex]\( y \)[/tex]-intercept of the graph is at [tex]\( (0, -2) \)[/tex]. This statement is true.

To summarize, the true statements about the inequality [tex]\( y > \frac{3}{4} x - 2 \)[/tex] are:

- The graph of [tex]\( y = \frac{3}{4} x - 2 \)[/tex] is a dashed line.
- One solution to the inequality is [tex]\( (0, 0) \)[/tex].
- The graph intercepts the [tex]\( y \)[/tex]-axis at [tex]\( (0, -2) \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.