Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To evaluate [tex]\(\frac{d}{d x} \int_a^x f(t) \, dt\)[/tex] and [tex]\(\frac{d}{d x} \int_a^b f(t) \, dt\)[/tex], let’s analyze them step-by-step.
### 1. [tex]\(\frac{d}{d x} \int_a^x f(t) \, dt\)[/tex]:
For this part, we can use the Fundamental Theorem of Calculus, Part 1, which states that if [tex]\(F(x) = \int_a^x f(t) \, dt\)[/tex], then the derivative [tex]\(F'(x)\)[/tex] is simply the integrand evaluated at [tex]\(x\)[/tex].
[tex]\[ \frac{d}{d x} \int_a^x f(t) \, dt = f(x) \][/tex]
This theorem essentially tells us that the derivative of the integral, with a variable upper limit, of a continuous function [tex]\(f(t)\)[/tex] is the function itself evaluated at the upper limit.
### 2. [tex]\(\frac{d}{d x} \int_a^b f(t) \, dt\)[/tex]:
In this case, [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are constants. Therefore, the integral [tex]\(\int_a^b f(t) \, dt\)[/tex] evaluates to a constant value regardless of [tex]\(x\)[/tex]. The derivative of a constant with respect to [tex]\(x\)[/tex] is zero.
[tex]\[ \frac{d}{d x} \int_a^b f(t) \, dt = 0 \][/tex]
### Summary:
Combining both results, we get:
[tex]\[ \frac{d}{d x} \int_a^x f(t) \, dt = f(x) \][/tex]
[tex]\[ \frac{d}{d x} \int_a^b f(t) \, dt = 0 \][/tex]
These results align with our understanding of calculus and the behavior of integrals with respect to differentiation.
### 1. [tex]\(\frac{d}{d x} \int_a^x f(t) \, dt\)[/tex]:
For this part, we can use the Fundamental Theorem of Calculus, Part 1, which states that if [tex]\(F(x) = \int_a^x f(t) \, dt\)[/tex], then the derivative [tex]\(F'(x)\)[/tex] is simply the integrand evaluated at [tex]\(x\)[/tex].
[tex]\[ \frac{d}{d x} \int_a^x f(t) \, dt = f(x) \][/tex]
This theorem essentially tells us that the derivative of the integral, with a variable upper limit, of a continuous function [tex]\(f(t)\)[/tex] is the function itself evaluated at the upper limit.
### 2. [tex]\(\frac{d}{d x} \int_a^b f(t) \, dt\)[/tex]:
In this case, [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are constants. Therefore, the integral [tex]\(\int_a^b f(t) \, dt\)[/tex] evaluates to a constant value regardless of [tex]\(x\)[/tex]. The derivative of a constant with respect to [tex]\(x\)[/tex] is zero.
[tex]\[ \frac{d}{d x} \int_a^b f(t) \, dt = 0 \][/tex]
### Summary:
Combining both results, we get:
[tex]\[ \frac{d}{d x} \int_a^x f(t) \, dt = f(x) \][/tex]
[tex]\[ \frac{d}{d x} \int_a^b f(t) \, dt = 0 \][/tex]
These results align with our understanding of calculus and the behavior of integrals with respect to differentiation.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.