At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To evaluate [tex]\(\frac{d}{d x} \int_a^x f(t) \, dt\)[/tex] and [tex]\(\frac{d}{d x} \int_a^b f(t) \, dt\)[/tex], let’s analyze them step-by-step.
### 1. [tex]\(\frac{d}{d x} \int_a^x f(t) \, dt\)[/tex]:
For this part, we can use the Fundamental Theorem of Calculus, Part 1, which states that if [tex]\(F(x) = \int_a^x f(t) \, dt\)[/tex], then the derivative [tex]\(F'(x)\)[/tex] is simply the integrand evaluated at [tex]\(x\)[/tex].
[tex]\[ \frac{d}{d x} \int_a^x f(t) \, dt = f(x) \][/tex]
This theorem essentially tells us that the derivative of the integral, with a variable upper limit, of a continuous function [tex]\(f(t)\)[/tex] is the function itself evaluated at the upper limit.
### 2. [tex]\(\frac{d}{d x} \int_a^b f(t) \, dt\)[/tex]:
In this case, [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are constants. Therefore, the integral [tex]\(\int_a^b f(t) \, dt\)[/tex] evaluates to a constant value regardless of [tex]\(x\)[/tex]. The derivative of a constant with respect to [tex]\(x\)[/tex] is zero.
[tex]\[ \frac{d}{d x} \int_a^b f(t) \, dt = 0 \][/tex]
### Summary:
Combining both results, we get:
[tex]\[ \frac{d}{d x} \int_a^x f(t) \, dt = f(x) \][/tex]
[tex]\[ \frac{d}{d x} \int_a^b f(t) \, dt = 0 \][/tex]
These results align with our understanding of calculus and the behavior of integrals with respect to differentiation.
### 1. [tex]\(\frac{d}{d x} \int_a^x f(t) \, dt\)[/tex]:
For this part, we can use the Fundamental Theorem of Calculus, Part 1, which states that if [tex]\(F(x) = \int_a^x f(t) \, dt\)[/tex], then the derivative [tex]\(F'(x)\)[/tex] is simply the integrand evaluated at [tex]\(x\)[/tex].
[tex]\[ \frac{d}{d x} \int_a^x f(t) \, dt = f(x) \][/tex]
This theorem essentially tells us that the derivative of the integral, with a variable upper limit, of a continuous function [tex]\(f(t)\)[/tex] is the function itself evaluated at the upper limit.
### 2. [tex]\(\frac{d}{d x} \int_a^b f(t) \, dt\)[/tex]:
In this case, [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are constants. Therefore, the integral [tex]\(\int_a^b f(t) \, dt\)[/tex] evaluates to a constant value regardless of [tex]\(x\)[/tex]. The derivative of a constant with respect to [tex]\(x\)[/tex] is zero.
[tex]\[ \frac{d}{d x} \int_a^b f(t) \, dt = 0 \][/tex]
### Summary:
Combining both results, we get:
[tex]\[ \frac{d}{d x} \int_a^x f(t) \, dt = f(x) \][/tex]
[tex]\[ \frac{d}{d x} \int_a^b f(t) \, dt = 0 \][/tex]
These results align with our understanding of calculus and the behavior of integrals with respect to differentiation.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.