Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Question 4 (1 point)
[tex]$\checkmark$[/tex] Saved

If [tex]A^2 + B^2 = A^2 + X^2[/tex], then [tex]B[/tex] equals:

a) [tex]\pm X[/tex]

b) [tex]X^2 - 2A^2[/tex]

c) [tex]\pm A[/tex]

d) [tex]A^2 + X^2[/tex]

Sagot :

To solve the equation [tex]\(A^2 + B^2 = A^2 + X^2\)[/tex], we can follow these steps:

1. Subtract [tex]\(A^2\)[/tex] from both sides:
[tex]\[ A^2 + B^2 - A^2 = A^2 + X^2 - A^2 \][/tex]
Simplifying this, we get:
[tex]\[ B^2 = X^2 \][/tex]

2. Take the square root of both sides:
[tex]\[ \sqrt{B^2} = \sqrt{X^2} \][/tex]
Remembering that the square root of a square yields both a positive and a negative solution, we obtain:
[tex]\[ B = \pm X \][/tex]

Thus, the value of [tex]\(B\)[/tex] that satisfies the equation [tex]\(A^2 + B^2 = A^2 + X^2\)[/tex] is [tex]\(B = \pm X\)[/tex].

Therefore, the correct answer is:
a) [tex]\(\pm X\)[/tex]