At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the system of equations:
1. [tex]\( 3x = 27 \)[/tex]
2. [tex]\( x + y = 7 \)[/tex]
Let's follow these steps:
### Step 1: Solve for [tex]\( x \)[/tex] in the first equation
The first equation is:
[tex]\[ 3x = 27 \][/tex]
To solve for [tex]\( x \)[/tex], divide both sides by 3:
[tex]\[ x = \frac{27}{3} \][/tex]
So,
[tex]\[ x = 9 \][/tex]
### Step 2: Substitute the value of [tex]\( x \)[/tex] into the second equation
Now we substitute [tex]\( x = 9 \)[/tex] into the second equation:
[tex]\[ x + y = 7 \][/tex]
This becomes:
[tex]\[ 9 + y = 7 \][/tex]
### Step 3: Solve for [tex]\( y \)[/tex]
To find [tex]\( y \)[/tex], subtract 9 from both sides:
[tex]\[ y = 7 - 9 \][/tex]
So,
[tex]\[ y = -2 \][/tex]
### Step 4: Identify the solution
The solution to the system of equations is the ordered pair [tex]\((x, y)\)[/tex], which we've found to be:
[tex]\[ (9, -2) \][/tex]
### Step 5: Verify the obtained solution
Let's verify by substituting [tex]\( x = 9 \)[/tex] and [tex]\( y = -2 \)[/tex] back into the original equations to ensure they hold true:
For the first equation:
[tex]\[ 3x = 27 \][/tex]
[tex]\[ 3(9) = 27 \][/tex]
[tex]\[ 27 = 27 \][/tex] (True)
For the second equation:
[tex]\[ x + y = 7 \][/tex]
[tex]\[ 9 + (-2) = 7 \][/tex]
[tex]\[ 7 = 7 \][/tex] (True)
The solution satisfies both equations, confirming that the correct solution is indeed:
[tex]\[ \boxed{(9, -2)} \][/tex]
So, of the given options:
- [tex]\((-17, 24)\)[/tex]
- [tex]\((9, -2)\)[/tex]
- [tex]\((24, -17)\)[/tex]
- [tex]\((-2, 9)\)[/tex]
The correct solution to the system of equations is:
[tex]\[ \boxed{(9, -2)} \][/tex]
1. [tex]\( 3x = 27 \)[/tex]
2. [tex]\( x + y = 7 \)[/tex]
Let's follow these steps:
### Step 1: Solve for [tex]\( x \)[/tex] in the first equation
The first equation is:
[tex]\[ 3x = 27 \][/tex]
To solve for [tex]\( x \)[/tex], divide both sides by 3:
[tex]\[ x = \frac{27}{3} \][/tex]
So,
[tex]\[ x = 9 \][/tex]
### Step 2: Substitute the value of [tex]\( x \)[/tex] into the second equation
Now we substitute [tex]\( x = 9 \)[/tex] into the second equation:
[tex]\[ x + y = 7 \][/tex]
This becomes:
[tex]\[ 9 + y = 7 \][/tex]
### Step 3: Solve for [tex]\( y \)[/tex]
To find [tex]\( y \)[/tex], subtract 9 from both sides:
[tex]\[ y = 7 - 9 \][/tex]
So,
[tex]\[ y = -2 \][/tex]
### Step 4: Identify the solution
The solution to the system of equations is the ordered pair [tex]\((x, y)\)[/tex], which we've found to be:
[tex]\[ (9, -2) \][/tex]
### Step 5: Verify the obtained solution
Let's verify by substituting [tex]\( x = 9 \)[/tex] and [tex]\( y = -2 \)[/tex] back into the original equations to ensure they hold true:
For the first equation:
[tex]\[ 3x = 27 \][/tex]
[tex]\[ 3(9) = 27 \][/tex]
[tex]\[ 27 = 27 \][/tex] (True)
For the second equation:
[tex]\[ x + y = 7 \][/tex]
[tex]\[ 9 + (-2) = 7 \][/tex]
[tex]\[ 7 = 7 \][/tex] (True)
The solution satisfies both equations, confirming that the correct solution is indeed:
[tex]\[ \boxed{(9, -2)} \][/tex]
So, of the given options:
- [tex]\((-17, 24)\)[/tex]
- [tex]\((9, -2)\)[/tex]
- [tex]\((24, -17)\)[/tex]
- [tex]\((-2, 9)\)[/tex]
The correct solution to the system of equations is:
[tex]\[ \boxed{(9, -2)} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.