Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

The function [tex]$h(x)$[/tex] is a transformation of the square root parent function, [tex]$f(x) = \sqrt{x}$[/tex]. What function is [tex][tex]$h(x)$[/tex][/tex]?

A. [tex]$h(x) = \sqrt{x} - 5$[/tex]
B. [tex]$h(x) = \sqrt{x + 5}$[/tex]
C. [tex][tex]$h(x) = \sqrt{x} + 5$[/tex][/tex]
D. [tex]$h(x) = \sqrt{x - 5}$[/tex]


Sagot :

To identify the function [tex]\( h(x) \)[/tex] as a transformation of the square root parent function [tex]\( f(x) = \sqrt{x} \)[/tex], we need to consider the possible transformations that can be applied to [tex]\( f(x) \)[/tex]. These transformations can include vertical shifts, horizontal shifts, and other more complex operations.

Let's analyze each given option based on transformations and match it with a logical step-by-step understanding.

A. [tex]\( h(x) = \sqrt{x} - 5 \)[/tex]:
- This represents a vertical shift downward by 5 units. If [tex]\( f(x) = \sqrt{x} \)[/tex], then [tex]\( h(x) = f(x) - 5 \)[/tex] would translate the graph 5 units down.

B. [tex]\( h(x) = \sqrt{x+5} \)[/tex]:
- This represents a horizontal shift to the left by 5 units. If [tex]\( f(x) = \sqrt{x} \)[/tex], then [tex]\( h(x) = f(x + 5) \)[/tex] would translate the graph 5 units to the left.

C. [tex]\( h(x) = \sqrt{x} + 5 \)[/tex]:
- This represents a vertical shift upward by 5 units. If [tex]\( f(x) = \sqrt{x} \)[/tex], then [tex]\( h(x) = f(x) + 5 \)[/tex] would translate the graph 5 units up.

D. [tex]\( h(x) = \sqrt{x - 5} \)[/tex]:
- This represents a horizontal shift to the right by 5 units. If [tex]\( f(x) = \sqrt{x} \)[/tex], then [tex]\( h(x) = f(x - 5) \)[/tex] would translate the graph 5 units to the right.

We are tasked with identifying the transformation that matches the function [tex]\( h(x) \)[/tex]. By understanding the fundamental transformations:

The correct transformation of the function [tex]\( f(x) = \sqrt{x} \)[/tex] specifying the transformation of [tex]\( x \)[/tex] by subtracting 5 falls under the horizontal translation to the right by 5 units, which corresponds to:

[tex]\[ h(x) = \sqrt{x - 5} \][/tex]

Thus, the correct function is:
[tex]\[ \boxed{h(x) = \sqrt{x - 5}} \][/tex]