Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this problem, we use Hess's Law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for the steps that lead to the final reaction. We are given three intermediate equations with their respective enthalpy changes:
[tex]\[ \begin{array}{ll} 1) & NO ( g ) + O_3 ( g ) \rightarrow NO_2 ( g ) + O_2 ( g ) \quad \Delta H_1 = -198.9 \, \text{kJ} \\ 2) & \frac{3}{2} O_2 ( g ) \rightarrow O_3 ( g ) \quad \Delta H_2 = 142.3 \, \text{kJ} \\ 3) & O ( g ) \rightarrow \frac{1}{2} O_2 ( g ) \quad \Delta H_3 = -247.5 \, \text{kJ} \end{array} \][/tex]
We seek the enthalpy change for the overall reaction:
[tex]\[ NO ( g ) + O ( g ) \rightarrow NO_2 ( g ) \][/tex]
To find this, we need to combine the given reactions such that the resultant equation matches the desired overall reaction [tex]\( NO ( g ) + O ( g ) \rightarrow NO_2 ( g ) \)[/tex].
First, note the target reaction:
[tex]\[ NO ( g ) + O ( g ) \rightarrow NO_2 ( g ) \][/tex]
Let's examine how to combine the given equations:
1. Start with the first equation:
[tex]\[ NO ( g ) + O_3 ( g ) \rightarrow NO_2 ( g ) + O_2 ( g ) \][/tex]
2. Then, consider the reverse of the second equation (because we need [tex]\( O_3 \)[/tex] to cancel out and match oxygen atoms):
[tex]\[ O_3 ( g ) \rightarrow \frac{3}{2} O_2 ( g ) \quad \Delta H = -142.3 \, \text{kJ} \][/tex]
3. Lastly, take the third equation:
[tex]\[ O ( g ) \rightarrow \frac{1}{2} O_2 ( g ) \][/tex]
Now, add up these reactions:
[tex]\[ \begin{align*} NO ( g ) + O_3 ( g ) & \rightarrow NO_2 ( g ) + O_2 ( g ) & (\Delta H_1 = -198.9 \, \text{kJ}) \\ O_3 ( g ) & \rightarrow \frac{3}{2} O_2 ( g ) & (\Delta H = -142.3 \, \text{kJ}) \\ O ( g ) & \rightarrow \frac{1}{2} O_2 ( g ) & (\Delta H_3 = -247.5 \, \text{kJ}) \end{align*} \][/tex]
Summing these reactions:
[tex]\[ \begin{array}{ll} NO ( g ) + O_3 ( g ) & \rightarrow NO_2 ( g ) + O_2 ( g ) \\ O_3 ( g ) & \rightarrow \frac{3}{2} O_2 ( g ) \\ O ( g ) & \rightarrow \frac{1}{2} O_2 ( g ) \end{array} \][/tex]
Simplifying by canceling the common terms on both sides, we get:
[tex]\[ NO ( g ) + O ( g ) \rightarrow NO_2 ( g ) \][/tex]
The sum of the enthalpy changes is:
[tex]\[ \Delta H_{\text{overall}} = \Delta H_1 + \Delta H_2 + \Delta H_3 \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{\text{overall}} = -198.9 \, \text{kJ} + 142.3 \, \text{kJ} + (-247.5 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{\text{overall}} = -198.9 + 142.3 - 247.5 = -304.1 \, \text{kJ} \][/tex]
Therefore, the enthalpy change for the overall reaction [tex]\( NO ( g ) + O ( g ) \rightarrow NO_2 ( g ) \)[/tex] is:
[tex]\[ \boxed{-304.1 \, \text{kJ}} \][/tex]
[tex]\[ \begin{array}{ll} 1) & NO ( g ) + O_3 ( g ) \rightarrow NO_2 ( g ) + O_2 ( g ) \quad \Delta H_1 = -198.9 \, \text{kJ} \\ 2) & \frac{3}{2} O_2 ( g ) \rightarrow O_3 ( g ) \quad \Delta H_2 = 142.3 \, \text{kJ} \\ 3) & O ( g ) \rightarrow \frac{1}{2} O_2 ( g ) \quad \Delta H_3 = -247.5 \, \text{kJ} \end{array} \][/tex]
We seek the enthalpy change for the overall reaction:
[tex]\[ NO ( g ) + O ( g ) \rightarrow NO_2 ( g ) \][/tex]
To find this, we need to combine the given reactions such that the resultant equation matches the desired overall reaction [tex]\( NO ( g ) + O ( g ) \rightarrow NO_2 ( g ) \)[/tex].
First, note the target reaction:
[tex]\[ NO ( g ) + O ( g ) \rightarrow NO_2 ( g ) \][/tex]
Let's examine how to combine the given equations:
1. Start with the first equation:
[tex]\[ NO ( g ) + O_3 ( g ) \rightarrow NO_2 ( g ) + O_2 ( g ) \][/tex]
2. Then, consider the reverse of the second equation (because we need [tex]\( O_3 \)[/tex] to cancel out and match oxygen atoms):
[tex]\[ O_3 ( g ) \rightarrow \frac{3}{2} O_2 ( g ) \quad \Delta H = -142.3 \, \text{kJ} \][/tex]
3. Lastly, take the third equation:
[tex]\[ O ( g ) \rightarrow \frac{1}{2} O_2 ( g ) \][/tex]
Now, add up these reactions:
[tex]\[ \begin{align*} NO ( g ) + O_3 ( g ) & \rightarrow NO_2 ( g ) + O_2 ( g ) & (\Delta H_1 = -198.9 \, \text{kJ}) \\ O_3 ( g ) & \rightarrow \frac{3}{2} O_2 ( g ) & (\Delta H = -142.3 \, \text{kJ}) \\ O ( g ) & \rightarrow \frac{1}{2} O_2 ( g ) & (\Delta H_3 = -247.5 \, \text{kJ}) \end{align*} \][/tex]
Summing these reactions:
[tex]\[ \begin{array}{ll} NO ( g ) + O_3 ( g ) & \rightarrow NO_2 ( g ) + O_2 ( g ) \\ O_3 ( g ) & \rightarrow \frac{3}{2} O_2 ( g ) \\ O ( g ) & \rightarrow \frac{1}{2} O_2 ( g ) \end{array} \][/tex]
Simplifying by canceling the common terms on both sides, we get:
[tex]\[ NO ( g ) + O ( g ) \rightarrow NO_2 ( g ) \][/tex]
The sum of the enthalpy changes is:
[tex]\[ \Delta H_{\text{overall}} = \Delta H_1 + \Delta H_2 + \Delta H_3 \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{\text{overall}} = -198.9 \, \text{kJ} + 142.3 \, \text{kJ} + (-247.5 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{\text{overall}} = -198.9 + 142.3 - 247.5 = -304.1 \, \text{kJ} \][/tex]
Therefore, the enthalpy change for the overall reaction [tex]\( NO ( g ) + O ( g ) \rightarrow NO_2 ( g ) \)[/tex] is:
[tex]\[ \boxed{-304.1 \, \text{kJ}} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.