Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine why the given expression is not a polynomial, we need to closely analyze its components. The expression in question is:
[tex]\[ \frac{33}{16} - 62 y^2 xy - 35 z^{\frac{1}{3}} y^2 \][/tex]
A polynomial expression has the following characteristics:
1. The exponents of the variables must be non-negative integers (0, 1, 2, etc.).
2. The expression cannot have variables in the denominator.
3. The coefficients of the terms can be any real numbers (they can be negative or positive).
Let’s analyze each term in the given expression:
1. [tex]\(\frac{33}{16}\)[/tex]: This is a constant term and it fits within the definition of a polynomial since it does not involve variables and hence doesn't have an exponent issue.
2. [tex]\(-62 y^2 xy\)[/tex]: This term involves the variables [tex]\(y\)[/tex] and [tex]\(x\)[/tex]. It can be simplified as [tex]\(-62 y^3 x\)[/tex] by combining the exponents of [tex]\(y\)[/tex]. Here, the exponents of [tex]\(y\)[/tex] and [tex]\(x\)[/tex] (3 and 1 respectively) are non-negative integers, so this term also fits within the definition of a polynomial.
3. [tex]\(-35 z^{\frac{1}{3}} y^2\)[/tex]: This term involves the variables [tex]\(z\)[/tex] and [tex]\(y\)[/tex]. The exponent of [tex]\(y\)[/tex] is 2, which is a non-negative integer. However, the exponent of [tex]\(z\)[/tex] is [tex]\(\frac{1}{3}\)[/tex], which is a fraction.
The key point is in the third term: [tex]\(z^{\frac{1}{3}}\)[/tex]. The exponent [tex]\(\frac{1}{3}\)[/tex] is a fractional value.
Since polynomials can only have variables raised to non-negative integer exponents, the presence of the term [tex]\(z^{\frac{1}{3}}\)[/tex] makes the entire expression a non-example of a polynomial.
Therefore, the best statement to demonstrate why the given expression is not a polynomial is:
The expression has a variable raised to a fraction.
[tex]\[ \frac{33}{16} - 62 y^2 xy - 35 z^{\frac{1}{3}} y^2 \][/tex]
A polynomial expression has the following characteristics:
1. The exponents of the variables must be non-negative integers (0, 1, 2, etc.).
2. The expression cannot have variables in the denominator.
3. The coefficients of the terms can be any real numbers (they can be negative or positive).
Let’s analyze each term in the given expression:
1. [tex]\(\frac{33}{16}\)[/tex]: This is a constant term and it fits within the definition of a polynomial since it does not involve variables and hence doesn't have an exponent issue.
2. [tex]\(-62 y^2 xy\)[/tex]: This term involves the variables [tex]\(y\)[/tex] and [tex]\(x\)[/tex]. It can be simplified as [tex]\(-62 y^3 x\)[/tex] by combining the exponents of [tex]\(y\)[/tex]. Here, the exponents of [tex]\(y\)[/tex] and [tex]\(x\)[/tex] (3 and 1 respectively) are non-negative integers, so this term also fits within the definition of a polynomial.
3. [tex]\(-35 z^{\frac{1}{3}} y^2\)[/tex]: This term involves the variables [tex]\(z\)[/tex] and [tex]\(y\)[/tex]. The exponent of [tex]\(y\)[/tex] is 2, which is a non-negative integer. However, the exponent of [tex]\(z\)[/tex] is [tex]\(\frac{1}{3}\)[/tex], which is a fraction.
The key point is in the third term: [tex]\(z^{\frac{1}{3}}\)[/tex]. The exponent [tex]\(\frac{1}{3}\)[/tex] is a fractional value.
Since polynomials can only have variables raised to non-negative integer exponents, the presence of the term [tex]\(z^{\frac{1}{3}}\)[/tex] makes the entire expression a non-example of a polynomial.
Therefore, the best statement to demonstrate why the given expression is not a polynomial is:
The expression has a variable raised to a fraction.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.