At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the equation of the median from vertex [tex]\( J \)[/tex] for the triangle with vertices [tex]\( J(2, 5) \)[/tex], [tex]\( K(4, -1) \)[/tex], and [tex]\( L(-2, -5) \)[/tex], we will follow these steps:
1. Find the midpoint of the line segment [tex]\( KL \)[/tex].
2. Calculate the slope of the line that joins vertex [tex]\( J \)[/tex] and the midpoint.
3. Use the point-slope form of the equation of a line to find the equation in slope-intercept form.
### Step 1: Find the midpoint of [tex]\( KL \)[/tex]
The coordinates of the midpoint [tex]\( M \)[/tex] of a line segment between two points [tex]\( K(x_1, y_1) \)[/tex] and [tex]\( L(x_2, y_2) \)[/tex] are given by:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
For points [tex]\( K(4, -1) \)[/tex] and [tex]\( L(-2, -5) \)[/tex]:
[tex]\[ M_x = \frac{4 + (-2)}{2} = \frac{2}{2} = 1 \][/tex]
[tex]\[ M_y = \frac{-1 + (-5)}{2} = \frac{-6}{2} = -3 \][/tex]
So, the midpoint [tex]\( M \)[/tex] is [tex]\((1, -3)\)[/tex].
### Step 2: Calculate the slope of the median
The slope [tex]\( m \)[/tex] of the line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the points [tex]\( J(2, 5) \)[/tex] and [tex]\( M(1, -3) \)[/tex]:
[tex]\[ m = \frac{-3 - 5}{1 - 2} = \frac{-8}{-1} = 8 \][/tex]
The slope of the median line is [tex]\( 8 \)[/tex].
### Step 3: Use the point-slope form to find the equation of the line
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the slope [tex]\( 8 \)[/tex] and the point [tex]\( J(2, 5) \)[/tex]:
[tex]\[ y - 5 = 8(x - 2) \][/tex]
Rearrange this to the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 5 = 8x - 16 \][/tex]
[tex]\[ y = 8x - 16 + 5 \][/tex]
[tex]\[ y = 8x - 11 \][/tex]
### Conclusion
The equation of the median from vertex [tex]\( J \)[/tex] for the triangle with vertices [tex]\( J(2, 5) \)[/tex], [tex]\( K(4, -1) \)[/tex], and [tex]\( L(-2, -5) \)[/tex] is:
[tex]\[ y = 8x - 11 \][/tex]
1. Find the midpoint of the line segment [tex]\( KL \)[/tex].
2. Calculate the slope of the line that joins vertex [tex]\( J \)[/tex] and the midpoint.
3. Use the point-slope form of the equation of a line to find the equation in slope-intercept form.
### Step 1: Find the midpoint of [tex]\( KL \)[/tex]
The coordinates of the midpoint [tex]\( M \)[/tex] of a line segment between two points [tex]\( K(x_1, y_1) \)[/tex] and [tex]\( L(x_2, y_2) \)[/tex] are given by:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
For points [tex]\( K(4, -1) \)[/tex] and [tex]\( L(-2, -5) \)[/tex]:
[tex]\[ M_x = \frac{4 + (-2)}{2} = \frac{2}{2} = 1 \][/tex]
[tex]\[ M_y = \frac{-1 + (-5)}{2} = \frac{-6}{2} = -3 \][/tex]
So, the midpoint [tex]\( M \)[/tex] is [tex]\((1, -3)\)[/tex].
### Step 2: Calculate the slope of the median
The slope [tex]\( m \)[/tex] of the line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the points [tex]\( J(2, 5) \)[/tex] and [tex]\( M(1, -3) \)[/tex]:
[tex]\[ m = \frac{-3 - 5}{1 - 2} = \frac{-8}{-1} = 8 \][/tex]
The slope of the median line is [tex]\( 8 \)[/tex].
### Step 3: Use the point-slope form to find the equation of the line
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the slope [tex]\( 8 \)[/tex] and the point [tex]\( J(2, 5) \)[/tex]:
[tex]\[ y - 5 = 8(x - 2) \][/tex]
Rearrange this to the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 5 = 8x - 16 \][/tex]
[tex]\[ y = 8x - 16 + 5 \][/tex]
[tex]\[ y = 8x - 11 \][/tex]
### Conclusion
The equation of the median from vertex [tex]\( J \)[/tex] for the triangle with vertices [tex]\( J(2, 5) \)[/tex], [tex]\( K(4, -1) \)[/tex], and [tex]\( L(-2, -5) \)[/tex] is:
[tex]\[ y = 8x - 11 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.