Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve this problem, let's follow each step methodically:
1. Identify the given values:
- Charge of the first particle ([tex]\(q_1\)[/tex]) = [tex]\(1.25 \times 10^{-9}\)[/tex] C
- Charge of the second particle ([tex]\(q_2\)[/tex]) = [tex]\(1.92 \times 10^{-9}\)[/tex] C
- Original distance between the particles ([tex]\(r_{\text{original}}\)[/tex]) = 0.38 m
- Coulomb's constant ([tex]\(k\)[/tex]) = [tex]\(9.00 \times 10^9\)[/tex] N·m²/C²
2. Apply Coulomb's Law for the original distance:
Coulomb's Law states:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
Substitute the given values for the original distance:
[tex]\[ F_{\text{original}} = \frac{(9.00 \times 10^9) \times (1.25 \times 10^{-9}) \times (1.92 \times 10^{-9})}{(0.38)^2} \][/tex]
3. Double the distance and calculate the new force:
The new distance ([tex]\(r_{\text{new}}\)[/tex]) = 2 \times 0.38 m = 0.76 m. Now, calculate the force with the new distance:
[tex]\[ F_{\text{new}} = \frac{k q_1 q_2}{(r_{\text{new}})^2} \][/tex]
Substitute the new distance:
[tex]\[ F_{\text{new}} = \frac{(9.00 \times 10^9) \times (1.25 \times 10^{-9}) \times (1.92 \times 10^{-9})}{(0.76)^2} \][/tex]
4. Evaluate the forces:
- The original force calculated:
[tex]\[ F_{\text{original}} = 1.50 \times 10^{-7} \, \text{N} \][/tex]
- The new force calculated:
[tex]\[ F_{\text{new}} = 3.74 \times 10^{-8} \, \text{N} \][/tex]
The force between the particles when the distance is doubled is [tex]\(3.74 \times 10^{-8} \, \text{N}\)[/tex]. Therefore, the correct answer is:
A. [tex]\(3.74 \times 10^{-8} \, \text{N}\)[/tex]
1. Identify the given values:
- Charge of the first particle ([tex]\(q_1\)[/tex]) = [tex]\(1.25 \times 10^{-9}\)[/tex] C
- Charge of the second particle ([tex]\(q_2\)[/tex]) = [tex]\(1.92 \times 10^{-9}\)[/tex] C
- Original distance between the particles ([tex]\(r_{\text{original}}\)[/tex]) = 0.38 m
- Coulomb's constant ([tex]\(k\)[/tex]) = [tex]\(9.00 \times 10^9\)[/tex] N·m²/C²
2. Apply Coulomb's Law for the original distance:
Coulomb's Law states:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
Substitute the given values for the original distance:
[tex]\[ F_{\text{original}} = \frac{(9.00 \times 10^9) \times (1.25 \times 10^{-9}) \times (1.92 \times 10^{-9})}{(0.38)^2} \][/tex]
3. Double the distance and calculate the new force:
The new distance ([tex]\(r_{\text{new}}\)[/tex]) = 2 \times 0.38 m = 0.76 m. Now, calculate the force with the new distance:
[tex]\[ F_{\text{new}} = \frac{k q_1 q_2}{(r_{\text{new}})^2} \][/tex]
Substitute the new distance:
[tex]\[ F_{\text{new}} = \frac{(9.00 \times 10^9) \times (1.25 \times 10^{-9}) \times (1.92 \times 10^{-9})}{(0.76)^2} \][/tex]
4. Evaluate the forces:
- The original force calculated:
[tex]\[ F_{\text{original}} = 1.50 \times 10^{-7} \, \text{N} \][/tex]
- The new force calculated:
[tex]\[ F_{\text{new}} = 3.74 \times 10^{-8} \, \text{N} \][/tex]
The force between the particles when the distance is doubled is [tex]\(3.74 \times 10^{-8} \, \text{N}\)[/tex]. Therefore, the correct answer is:
A. [tex]\(3.74 \times 10^{-8} \, \text{N}\)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.