Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, let's follow each step methodically:
1. Identify the given values:
- Charge of the first particle ([tex]\(q_1\)[/tex]) = [tex]\(1.25 \times 10^{-9}\)[/tex] C
- Charge of the second particle ([tex]\(q_2\)[/tex]) = [tex]\(1.92 \times 10^{-9}\)[/tex] C
- Original distance between the particles ([tex]\(r_{\text{original}}\)[/tex]) = 0.38 m
- Coulomb's constant ([tex]\(k\)[/tex]) = [tex]\(9.00 \times 10^9\)[/tex] N·m²/C²
2. Apply Coulomb's Law for the original distance:
Coulomb's Law states:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
Substitute the given values for the original distance:
[tex]\[ F_{\text{original}} = \frac{(9.00 \times 10^9) \times (1.25 \times 10^{-9}) \times (1.92 \times 10^{-9})}{(0.38)^2} \][/tex]
3. Double the distance and calculate the new force:
The new distance ([tex]\(r_{\text{new}}\)[/tex]) = 2 \times 0.38 m = 0.76 m. Now, calculate the force with the new distance:
[tex]\[ F_{\text{new}} = \frac{k q_1 q_2}{(r_{\text{new}})^2} \][/tex]
Substitute the new distance:
[tex]\[ F_{\text{new}} = \frac{(9.00 \times 10^9) \times (1.25 \times 10^{-9}) \times (1.92 \times 10^{-9})}{(0.76)^2} \][/tex]
4. Evaluate the forces:
- The original force calculated:
[tex]\[ F_{\text{original}} = 1.50 \times 10^{-7} \, \text{N} \][/tex]
- The new force calculated:
[tex]\[ F_{\text{new}} = 3.74 \times 10^{-8} \, \text{N} \][/tex]
The force between the particles when the distance is doubled is [tex]\(3.74 \times 10^{-8} \, \text{N}\)[/tex]. Therefore, the correct answer is:
A. [tex]\(3.74 \times 10^{-8} \, \text{N}\)[/tex]
1. Identify the given values:
- Charge of the first particle ([tex]\(q_1\)[/tex]) = [tex]\(1.25 \times 10^{-9}\)[/tex] C
- Charge of the second particle ([tex]\(q_2\)[/tex]) = [tex]\(1.92 \times 10^{-9}\)[/tex] C
- Original distance between the particles ([tex]\(r_{\text{original}}\)[/tex]) = 0.38 m
- Coulomb's constant ([tex]\(k\)[/tex]) = [tex]\(9.00 \times 10^9\)[/tex] N·m²/C²
2. Apply Coulomb's Law for the original distance:
Coulomb's Law states:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
Substitute the given values for the original distance:
[tex]\[ F_{\text{original}} = \frac{(9.00 \times 10^9) \times (1.25 \times 10^{-9}) \times (1.92 \times 10^{-9})}{(0.38)^2} \][/tex]
3. Double the distance and calculate the new force:
The new distance ([tex]\(r_{\text{new}}\)[/tex]) = 2 \times 0.38 m = 0.76 m. Now, calculate the force with the new distance:
[tex]\[ F_{\text{new}} = \frac{k q_1 q_2}{(r_{\text{new}})^2} \][/tex]
Substitute the new distance:
[tex]\[ F_{\text{new}} = \frac{(9.00 \times 10^9) \times (1.25 \times 10^{-9}) \times (1.92 \times 10^{-9})}{(0.76)^2} \][/tex]
4. Evaluate the forces:
- The original force calculated:
[tex]\[ F_{\text{original}} = 1.50 \times 10^{-7} \, \text{N} \][/tex]
- The new force calculated:
[tex]\[ F_{\text{new}} = 3.74 \times 10^{-8} \, \text{N} \][/tex]
The force between the particles when the distance is doubled is [tex]\(3.74 \times 10^{-8} \, \text{N}\)[/tex]. Therefore, the correct answer is:
A. [tex]\(3.74 \times 10^{-8} \, \text{N}\)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.