Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine how oxygen appears in the final chemical equation derived from the given intermediate chemical equations, let’s combine the two equations step by step. Here are the given intermediate equations:
1. [tex]\( C(s) + \frac{1}{2} O_2(g) \rightarrow CO(g) \)[/tex]
2. [tex]\( CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g) \)[/tex]
Step-by-step combination:
1. Add the two reactions:
[tex]\[ \begin{aligned} &\text{First Equation:} & C(s) + \frac{1}{2} O_2(g) &\rightarrow CO(g) \\ &\text{Second Equation:} & CO(g) + \frac{1}{2} O_2(g) &\rightarrow CO_2(g) \\ \end{aligned} \][/tex]
2. When we add these equations together, we combine the reactants and the products:
[tex]\[ C(s) + \frac{1}{2} O_2(g) + CO(g) + \frac{1}{2} O_2(g) \rightarrow CO(g) + CO_2(g) \][/tex]
3. Simplify the equation by canceling out the [tex]\( CO(g) \)[/tex] on both the reactant and product sides:
[tex]\[ C(s) + \frac{1}{2} O_2(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g) \][/tex]
4. Combine the [tex]\( O_2(g) \)[/tex] terms on the left side:
[tex]\[ C(s) + 1 O_2(g) \rightarrow CO_2(g) \][/tex]
After combining and simplifying the two intermediate reactions, the overall reaction becomes:
[tex]\[ C(s) + O_2(g) \rightarrow CO_2(g) \][/tex]
From this final combined equation, it is evident that:
- [tex]\( O_2(g) \)[/tex] appears as a reactant.
Therefore, the correct answer regarding how oxygen appears in the final chemical equation is:
[tex]\[ O_2(g) \text{ as a reactant} \][/tex]
1. [tex]\( C(s) + \frac{1}{2} O_2(g) \rightarrow CO(g) \)[/tex]
2. [tex]\( CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g) \)[/tex]
Step-by-step combination:
1. Add the two reactions:
[tex]\[ \begin{aligned} &\text{First Equation:} & C(s) + \frac{1}{2} O_2(g) &\rightarrow CO(g) \\ &\text{Second Equation:} & CO(g) + \frac{1}{2} O_2(g) &\rightarrow CO_2(g) \\ \end{aligned} \][/tex]
2. When we add these equations together, we combine the reactants and the products:
[tex]\[ C(s) + \frac{1}{2} O_2(g) + CO(g) + \frac{1}{2} O_2(g) \rightarrow CO(g) + CO_2(g) \][/tex]
3. Simplify the equation by canceling out the [tex]\( CO(g) \)[/tex] on both the reactant and product sides:
[tex]\[ C(s) + \frac{1}{2} O_2(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g) \][/tex]
4. Combine the [tex]\( O_2(g) \)[/tex] terms on the left side:
[tex]\[ C(s) + 1 O_2(g) \rightarrow CO_2(g) \][/tex]
After combining and simplifying the two intermediate reactions, the overall reaction becomes:
[tex]\[ C(s) + O_2(g) \rightarrow CO_2(g) \][/tex]
From this final combined equation, it is evident that:
- [tex]\( O_2(g) \)[/tex] appears as a reactant.
Therefore, the correct answer regarding how oxygen appears in the final chemical equation is:
[tex]\[ O_2(g) \text{ as a reactant} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.