Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

On a piece of paper, graph the system of equations. Then determine which answer choice matches the graph you drew and identify the solution to the system.

[tex]\[
\begin{array}{l}
y = 2x - 1 \\
y = -x + 5
\end{array}
\][/tex]


Sagot :

To graph the system of equations and determine the solution, follow these steps:

### 1. Understand the Equations
We have the following system of linear equations:

[tex]\[ \begin{cases} y = 2x - 1 \\ y = -x + 5 \end{cases} \][/tex]

### 2. Plot Each Equation on a Graph

#### Equation 1: [tex]\( y = 2x - 1 \)[/tex]
- Slope (m): 2
- Y-intercept (b): -1

To plot this equation, start at the y-intercept [tex]\((0, -1)\)[/tex] and use the slope to find another point. Since the slope is 2, it means for every 1 unit increase in [tex]\(x\)[/tex], [tex]\(y\)[/tex] increases by 2 units.

- Starting point: [tex]\((0, -1)\)[/tex]
- Another point: [tex]\((1, 2(1) - 1) = (1, 1)\)[/tex]

Draw a line through these points.

#### Equation 2: [tex]\( y = -x + 5 \)[/tex]
- Slope (m): -1
- Y-intercept (b): 5

To plot this equation, start at the y-intercept [tex]\((0, 5)\)[/tex] and use the slope to find another point. Since the slope is -1, it means for every 1 unit increase in [tex]\(x\)[/tex], [tex]\(y\)[/tex] decreases by 1 unit.

- Starting point: [tex]\((0, 5)\)[/tex]
- Another point: [tex]\((1, -(1) + 5) = (1, 4)\)[/tex]

Draw a line through these points.

### 3. Find the Intersection Point
To find the solution to the system, we need to determine the point where the two lines intersect. This intersection point is the solution to the system of equations.

We can solve the equations algebraically by setting them equal to each other:

[tex]\[ 2x - 1 = -x + 5 \][/tex]

Add [tex]\(x\)[/tex] to both sides:

[tex]\[ 2x + x - 1 = 5 \][/tex]
[tex]\[ 3x - 1 = 5 \][/tex]

Add 1 to both sides:

[tex]\[ 3x = 6 \][/tex]

Divide by 3:

[tex]\[ x = 2 \][/tex]

Substitute [tex]\(x = 2\)[/tex] back into either original equation to find [tex]\(y\)[/tex]:

[tex]\[ y = 2(2) - 1 \][/tex]
[tex]\[ y = 4 - 1 \][/tex]
[tex]\[ y = 3 \][/tex]

So the intersection point is [tex]\((2, 3)\)[/tex].

### 4. Conclusion
The graph you drew should show the lines intersecting at the point [tex]\((2, 3)\)[/tex]. This is the solution to the system of equations.

Thus, the answer is:

[tex]\[ \boxed{(2, 3)} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.