Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which of the given reactions would have a negative entropy change, we need to consider whether the entropy (disorder) of the system increases or decreases during each reaction. Entropy generally increases when a reaction produces gases from solids or liquids and decreases when gases are converted into fewer gas molecules or into solids or liquids.
Let’s analyze each reaction step-by-step:
### A. [tex]\( N_2(g) + 3 H_2(g) \to 2 NH_3(g) \)[/tex]
- Reactants: 1 mole of [tex]\( N_2 \)[/tex] gas and 3 moles of [tex]\( H_2 \)[/tex] gas, for a total of 4 moles of gas.
- Products: 2 moles of [tex]\( NH_3 \)[/tex] gas.
- Comparison: We start with 4 moles of gas and end with 2 moles of gas.
- Entropy Change: The number of gas molecules decreases, which means the disorder of the system decreases. Therefore, the entropy decreases.
### B. [tex]\( Fe_2O_3(s) + 3 C(s) \to 2 Fe(s) + 3 CO(g) \)[/tex]
- Reactants: 1 mole of [tex]\( Fe_2O_3 \)[/tex] solid and 3 moles of carbon solid, for a total of 4 moles of solid.
- Products: 2 moles of iron solid and 3 moles of [tex]\( CO \)[/tex] gas.
- Comparison: We start with solids only and produce some gas.
- Entropy Change: Solid to gas conversion increases disorder. Therefore, the entropy increases.
### C. [tex]\( CaCO_3(s) \to CaO(s) + CO_2(g) \)[/tex]
- Reactants: 1 mole of [tex]\( CaCO_3 \)[/tex] solid.
- Products: 1 mole of [tex]\( CaO \)[/tex] solid and 1 mole of [tex]\( CO_2 \)[/tex] gas.
- Comparison: We start with a solid and produce a gas.
- Entropy Change: The formation of a gas from a solid increases disorder. Therefore, the entropy increases.
### D. [tex]\( H_2O(s) \to H_2O(l) \)[/tex]
- Reactants: 1 mole of [tex]\( H_2O \)[/tex] solid (ice).
- Products: 1 mole of [tex]\( H_2O \)[/tex] liquid (water).
- Comparison: We start with a solid and produce a liquid.
- Entropy Change: Solids are more ordered than liquids, so converting a solid to a liquid increases disorder. Therefore, the entropy increases.
### Conclusion:
By analyzing each reaction, we observe that only reaction A ([tex]\( N_2(g) + 3 H_2(g) \to 2 NH_3(g) \)[/tex]) has a decrease in the number of gas molecules, leading to a decrease in entropy. Therefore, the reaction with a negative entropy change is:
A. [tex]\( N_2(g) + 3 H_2(g) \to 2 NH_3(g) \)[/tex]
Let’s analyze each reaction step-by-step:
### A. [tex]\( N_2(g) + 3 H_2(g) \to 2 NH_3(g) \)[/tex]
- Reactants: 1 mole of [tex]\( N_2 \)[/tex] gas and 3 moles of [tex]\( H_2 \)[/tex] gas, for a total of 4 moles of gas.
- Products: 2 moles of [tex]\( NH_3 \)[/tex] gas.
- Comparison: We start with 4 moles of gas and end with 2 moles of gas.
- Entropy Change: The number of gas molecules decreases, which means the disorder of the system decreases. Therefore, the entropy decreases.
### B. [tex]\( Fe_2O_3(s) + 3 C(s) \to 2 Fe(s) + 3 CO(g) \)[/tex]
- Reactants: 1 mole of [tex]\( Fe_2O_3 \)[/tex] solid and 3 moles of carbon solid, for a total of 4 moles of solid.
- Products: 2 moles of iron solid and 3 moles of [tex]\( CO \)[/tex] gas.
- Comparison: We start with solids only and produce some gas.
- Entropy Change: Solid to gas conversion increases disorder. Therefore, the entropy increases.
### C. [tex]\( CaCO_3(s) \to CaO(s) + CO_2(g) \)[/tex]
- Reactants: 1 mole of [tex]\( CaCO_3 \)[/tex] solid.
- Products: 1 mole of [tex]\( CaO \)[/tex] solid and 1 mole of [tex]\( CO_2 \)[/tex] gas.
- Comparison: We start with a solid and produce a gas.
- Entropy Change: The formation of a gas from a solid increases disorder. Therefore, the entropy increases.
### D. [tex]\( H_2O(s) \to H_2O(l) \)[/tex]
- Reactants: 1 mole of [tex]\( H_2O \)[/tex] solid (ice).
- Products: 1 mole of [tex]\( H_2O \)[/tex] liquid (water).
- Comparison: We start with a solid and produce a liquid.
- Entropy Change: Solids are more ordered than liquids, so converting a solid to a liquid increases disorder. Therefore, the entropy increases.
### Conclusion:
By analyzing each reaction, we observe that only reaction A ([tex]\( N_2(g) + 3 H_2(g) \to 2 NH_3(g) \)[/tex]) has a decrease in the number of gas molecules, leading to a decrease in entropy. Therefore, the reaction with a negative entropy change is:
A. [tex]\( N_2(g) + 3 H_2(g) \to 2 NH_3(g) \)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.