At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's explore the polynomial [tex]\( p(x) = 3x^2 - 12x + 15 \)[/tex] and find its roots, denoted as [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]. We need to determine the values of [tex]\(\alpha + \beta\)[/tex] and [tex]\(\alpha \beta\)[/tex].
### Step-by-Step Solution:
1. Identify the coefficients of the polynomial:
The polynomial takes the general form [tex]\( ax^2 + bx + c \)[/tex], where:
- [tex]\( a = 3 \)[/tex]
- [tex]\( b = -12 \)[/tex]
- [tex]\( c = 15 \)[/tex]
2. Sum of the roots:
According to the properties of a quadratic polynomial [tex]\( ax^2 + bx + c \)[/tex], the sum of the roots ([tex]\(\alpha + \beta\)[/tex]) is given by:
[tex]\[ \alpha + \beta = -\frac{b}{a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ \alpha + \beta = -\frac{-12}{3} = \frac{12}{3} = 4.0 \][/tex]
3. Product of the roots:
Similarly, the product of the roots ([tex]\(\alpha \beta\)[/tex]) is given by:
[tex]\[ \alpha \beta = \frac{c}{a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( c \)[/tex]:
[tex]\[ \alpha \beta = \frac{15}{3} = 5.0 \][/tex]
### Conclusion:
- The sum of the roots [tex]\( \alpha + \beta \)[/tex] is [tex]\( 4.0 \)[/tex].
- The product of the roots [tex]\( \alpha \beta \)[/tex] is [tex]\( 5.0 \)[/tex].
Thus, the values are:
[tex]\[ \alpha + \beta = 4.0 \quad \text{and} \quad \alpha \beta = 5.0 \][/tex]
### Step-by-Step Solution:
1. Identify the coefficients of the polynomial:
The polynomial takes the general form [tex]\( ax^2 + bx + c \)[/tex], where:
- [tex]\( a = 3 \)[/tex]
- [tex]\( b = -12 \)[/tex]
- [tex]\( c = 15 \)[/tex]
2. Sum of the roots:
According to the properties of a quadratic polynomial [tex]\( ax^2 + bx + c \)[/tex], the sum of the roots ([tex]\(\alpha + \beta\)[/tex]) is given by:
[tex]\[ \alpha + \beta = -\frac{b}{a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ \alpha + \beta = -\frac{-12}{3} = \frac{12}{3} = 4.0 \][/tex]
3. Product of the roots:
Similarly, the product of the roots ([tex]\(\alpha \beta\)[/tex]) is given by:
[tex]\[ \alpha \beta = \frac{c}{a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( c \)[/tex]:
[tex]\[ \alpha \beta = \frac{15}{3} = 5.0 \][/tex]
### Conclusion:
- The sum of the roots [tex]\( \alpha + \beta \)[/tex] is [tex]\( 4.0 \)[/tex].
- The product of the roots [tex]\( \alpha \beta \)[/tex] is [tex]\( 5.0 \)[/tex].
Thus, the values are:
[tex]\[ \alpha + \beta = 4.0 \quad \text{and} \quad \alpha \beta = 5.0 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.