Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's explore the polynomial [tex]\( p(x) = 3x^2 - 12x + 15 \)[/tex] and find its roots, denoted as [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]. We need to determine the values of [tex]\(\alpha + \beta\)[/tex] and [tex]\(\alpha \beta\)[/tex].
### Step-by-Step Solution:
1. Identify the coefficients of the polynomial:
The polynomial takes the general form [tex]\( ax^2 + bx + c \)[/tex], where:
- [tex]\( a = 3 \)[/tex]
- [tex]\( b = -12 \)[/tex]
- [tex]\( c = 15 \)[/tex]
2. Sum of the roots:
According to the properties of a quadratic polynomial [tex]\( ax^2 + bx + c \)[/tex], the sum of the roots ([tex]\(\alpha + \beta\)[/tex]) is given by:
[tex]\[ \alpha + \beta = -\frac{b}{a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ \alpha + \beta = -\frac{-12}{3} = \frac{12}{3} = 4.0 \][/tex]
3. Product of the roots:
Similarly, the product of the roots ([tex]\(\alpha \beta\)[/tex]) is given by:
[tex]\[ \alpha \beta = \frac{c}{a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( c \)[/tex]:
[tex]\[ \alpha \beta = \frac{15}{3} = 5.0 \][/tex]
### Conclusion:
- The sum of the roots [tex]\( \alpha + \beta \)[/tex] is [tex]\( 4.0 \)[/tex].
- The product of the roots [tex]\( \alpha \beta \)[/tex] is [tex]\( 5.0 \)[/tex].
Thus, the values are:
[tex]\[ \alpha + \beta = 4.0 \quad \text{and} \quad \alpha \beta = 5.0 \][/tex]
### Step-by-Step Solution:
1. Identify the coefficients of the polynomial:
The polynomial takes the general form [tex]\( ax^2 + bx + c \)[/tex], where:
- [tex]\( a = 3 \)[/tex]
- [tex]\( b = -12 \)[/tex]
- [tex]\( c = 15 \)[/tex]
2. Sum of the roots:
According to the properties of a quadratic polynomial [tex]\( ax^2 + bx + c \)[/tex], the sum of the roots ([tex]\(\alpha + \beta\)[/tex]) is given by:
[tex]\[ \alpha + \beta = -\frac{b}{a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ \alpha + \beta = -\frac{-12}{3} = \frac{12}{3} = 4.0 \][/tex]
3. Product of the roots:
Similarly, the product of the roots ([tex]\(\alpha \beta\)[/tex]) is given by:
[tex]\[ \alpha \beta = \frac{c}{a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( c \)[/tex]:
[tex]\[ \alpha \beta = \frac{15}{3} = 5.0 \][/tex]
### Conclusion:
- The sum of the roots [tex]\( \alpha + \beta \)[/tex] is [tex]\( 4.0 \)[/tex].
- The product of the roots [tex]\( \alpha \beta \)[/tex] is [tex]\( 5.0 \)[/tex].
Thus, the values are:
[tex]\[ \alpha + \beta = 4.0 \quad \text{and} \quad \alpha \beta = 5.0 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.