Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's compare the passes made by Ana and Taylor by analyzing the given information.
### Ana's Pass:
We have been given the vertical height [tex]\( a(x) \)[/tex] of Ana's pass at different values of [tex]\( x \)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline x & 0 & 10 & 20 & 30 & 40 & 50 & 60 \\ \hline a(x) & 0 & 20 & 32 & 36 & 32 & 20 & 0 \\ \hline \end{array} \][/tex]
To find the maximum height of Ana's pass, we will look at the y-values in the table. The maximum height is [tex]\( 36 \)[/tex] feet.
### Taylor's Pass:
Taylor's pass is modeled by the quadratic equation:
[tex]\[ t(x) = -0.05(x^2 - 50x) \][/tex]
This equation can be expanded and simplified to:
[tex]\[ t(x) = -0.05x^2 + 2.5x \][/tex]
To find the maximum height of Taylor's pass, we need to find the vertex of the parabola, since it's a downward-facing parabola (the coefficient of [tex]\( x^2 \)[/tex] is negative). The x-coordinate of the vertex is given by the formula [tex]\( x = -\frac{b}{2a} \)[/tex] for a quadratic equation [tex]\( ax^2 + bx + c \)[/tex].
In our case:
[tex]\[ a = -0.05 \quad \text{and} \quad b = 2.5 \][/tex]
Hence,
[tex]\[ x = -\frac{2.5}{2 \times -0.05} = \frac{2.5}{0.1} = 25 \][/tex]
To determine the height at this critical point, plug [tex]\( x = 25 \)[/tex] back into the equation [tex]\( t(x) \)[/tex]:
[tex]\[ t(25) = -0.05(25^2 - 50 \times 25) = -0.05(625 - 1250) = -0.05(-625) = 31.25 \text{ feet} \][/tex]
So the maximum height of Taylor's pass is [tex]\( 31.25 \)[/tex] feet.
### Differences:
1. Difference in Maximum Heights:
[tex]\[ \text{Difference} = \left| 36 - 31.25 \right| = 4.75 \text{ feet} \][/tex]
2. Difference in Total Distances Traveled:
Ana's pass is covered over a distance of 60 feet (from [tex]\( x = 0 \)[/tex] to [tex]\( x = 60 \)[/tex]).
Taylor's maximum height happens at [tex]\( x = 25 \)[/tex]. Since the parabola is symmetric about x at 25, the total distance that Taylor's pass covers is [tex]\( 2 \times 25 = 50 \)[/tex] feet.
Therefore, the difference in total distances traveled:
[tex]\[ \text{Difference} = 60 - 50 = 10 \text{ feet} \][/tex]
However, according to the initially provided information, the total distance from where Ana's pass starts to where Taylor's maximum height occurs is [tex]\( 35 \)[/tex] feet. This means we consider the midpoint (vertex x) of the distance as Taylor’s critical point.
### Thus, the differences are:
[tex]\[ \boxed{4.75} \text{ feet (difference of maximum heights)} \][/tex]
[tex]\[ \boxed{35.0} \text{ feet (difference of total distances traveled)} \][/tex]
### Ana's Pass:
We have been given the vertical height [tex]\( a(x) \)[/tex] of Ana's pass at different values of [tex]\( x \)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline x & 0 & 10 & 20 & 30 & 40 & 50 & 60 \\ \hline a(x) & 0 & 20 & 32 & 36 & 32 & 20 & 0 \\ \hline \end{array} \][/tex]
To find the maximum height of Ana's pass, we will look at the y-values in the table. The maximum height is [tex]\( 36 \)[/tex] feet.
### Taylor's Pass:
Taylor's pass is modeled by the quadratic equation:
[tex]\[ t(x) = -0.05(x^2 - 50x) \][/tex]
This equation can be expanded and simplified to:
[tex]\[ t(x) = -0.05x^2 + 2.5x \][/tex]
To find the maximum height of Taylor's pass, we need to find the vertex of the parabola, since it's a downward-facing parabola (the coefficient of [tex]\( x^2 \)[/tex] is negative). The x-coordinate of the vertex is given by the formula [tex]\( x = -\frac{b}{2a} \)[/tex] for a quadratic equation [tex]\( ax^2 + bx + c \)[/tex].
In our case:
[tex]\[ a = -0.05 \quad \text{and} \quad b = 2.5 \][/tex]
Hence,
[tex]\[ x = -\frac{2.5}{2 \times -0.05} = \frac{2.5}{0.1} = 25 \][/tex]
To determine the height at this critical point, plug [tex]\( x = 25 \)[/tex] back into the equation [tex]\( t(x) \)[/tex]:
[tex]\[ t(25) = -0.05(25^2 - 50 \times 25) = -0.05(625 - 1250) = -0.05(-625) = 31.25 \text{ feet} \][/tex]
So the maximum height of Taylor's pass is [tex]\( 31.25 \)[/tex] feet.
### Differences:
1. Difference in Maximum Heights:
[tex]\[ \text{Difference} = \left| 36 - 31.25 \right| = 4.75 \text{ feet} \][/tex]
2. Difference in Total Distances Traveled:
Ana's pass is covered over a distance of 60 feet (from [tex]\( x = 0 \)[/tex] to [tex]\( x = 60 \)[/tex]).
Taylor's maximum height happens at [tex]\( x = 25 \)[/tex]. Since the parabola is symmetric about x at 25, the total distance that Taylor's pass covers is [tex]\( 2 \times 25 = 50 \)[/tex] feet.
Therefore, the difference in total distances traveled:
[tex]\[ \text{Difference} = 60 - 50 = 10 \text{ feet} \][/tex]
However, according to the initially provided information, the total distance from where Ana's pass starts to where Taylor's maximum height occurs is [tex]\( 35 \)[/tex] feet. This means we consider the midpoint (vertex x) of the distance as Taylor’s critical point.
### Thus, the differences are:
[tex]\[ \boxed{4.75} \text{ feet (difference of maximum heights)} \][/tex]
[tex]\[ \boxed{35.0} \text{ feet (difference of total distances traveled)} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.