Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the system of equations [tex]\( y = 4x - 1 \)[/tex] and [tex]\( y = -3x + 5 \)[/tex] using the table of values provided, let's follow Gina's approach to see if the y-values from both equations match for any x-value within the specified range, which is between 0.5 and 1.0.
First, we consider the table provided:
[tex]\[ \begin{array}{|c|c|c|} \hline x & y=4x-1 & y=-3x+5 \\ \hline 0.5 & 1 & 3.5 \\ \hline 0.6 & 1.4 & 3.2 \\ \hline 0.7 & 1.8 & 2.9 \\ \hline 0.8 & 2.2 & 2.6 \\ \hline 0.9 & 2.6 & 2.3 \\ \hline 1.0 & 3 & 2 \\ \hline \end{array} \][/tex]
Now, let's check each row to see if and where the y-values of both equations are equal:
1. For [tex]\( x = 0.5 \)[/tex]:
- [tex]\( y = 4(0.5) - 1 = 1 \)[/tex]
- [tex]\( y = -3(0.5) + 5 = 3.5 \)[/tex]
- The y-values are not equal.
2. For [tex]\( x = 0.6 \)[/tex]:
- [tex]\( y = 4(0.6) - 1 = 1.4 \)[/tex]
- [tex]\( y = -3(0.6) + 5 = 3.2 \)[/tex]
- The y-values are not equal.
3. For [tex]\( x = 0.7 \)[/tex]:
- [tex]\( y = 4(0.7) - 1 = 1.8 \)[/tex]
- [tex]\( y = -3(0.7) + 5 = 2.9 \)[/tex]
- The y-values are not equal.
4. For [tex]\( x = 0.8 \)[/tex]:
- [tex]\( y = 4(0.8) - 1 = 2.2 \)[/tex]
- [tex]\( y = -3(0.8) + 5 = 2.6 \)[/tex]
- The y-values are not equal.
5. For [tex]\( x = 0.9 \)[/tex]:
- [tex]\( y = 4(0.9) - 1 = 2.6 \)[/tex]
- [tex]\( y = -3(0.9) + 5 = 2.3 \)[/tex]
- The y-values are not equal.
6. For [tex]\( x = 1.0 \)[/tex]:
- [tex]\( y = 4(1.0) - 1 = 3 \)[/tex]
- [tex]\( y = -3(1.0) + 5 = 2 \)[/tex]
- The y-values are not equal.
Conclusively, by checking all the provided x-values and corresponding y-values, we see that there is no single x-value where the y-values from [tex]\( y = 4x - 1 \)[/tex] and [tex]\( y = -3x + 5 \)[/tex] are equal.
Therefore, there is no solution to the system of equations within the specified range of x-values between 0.5 and 1.0.
First, we consider the table provided:
[tex]\[ \begin{array}{|c|c|c|} \hline x & y=4x-1 & y=-3x+5 \\ \hline 0.5 & 1 & 3.5 \\ \hline 0.6 & 1.4 & 3.2 \\ \hline 0.7 & 1.8 & 2.9 \\ \hline 0.8 & 2.2 & 2.6 \\ \hline 0.9 & 2.6 & 2.3 \\ \hline 1.0 & 3 & 2 \\ \hline \end{array} \][/tex]
Now, let's check each row to see if and where the y-values of both equations are equal:
1. For [tex]\( x = 0.5 \)[/tex]:
- [tex]\( y = 4(0.5) - 1 = 1 \)[/tex]
- [tex]\( y = -3(0.5) + 5 = 3.5 \)[/tex]
- The y-values are not equal.
2. For [tex]\( x = 0.6 \)[/tex]:
- [tex]\( y = 4(0.6) - 1 = 1.4 \)[/tex]
- [tex]\( y = -3(0.6) + 5 = 3.2 \)[/tex]
- The y-values are not equal.
3. For [tex]\( x = 0.7 \)[/tex]:
- [tex]\( y = 4(0.7) - 1 = 1.8 \)[/tex]
- [tex]\( y = -3(0.7) + 5 = 2.9 \)[/tex]
- The y-values are not equal.
4. For [tex]\( x = 0.8 \)[/tex]:
- [tex]\( y = 4(0.8) - 1 = 2.2 \)[/tex]
- [tex]\( y = -3(0.8) + 5 = 2.6 \)[/tex]
- The y-values are not equal.
5. For [tex]\( x = 0.9 \)[/tex]:
- [tex]\( y = 4(0.9) - 1 = 2.6 \)[/tex]
- [tex]\( y = -3(0.9) + 5 = 2.3 \)[/tex]
- The y-values are not equal.
6. For [tex]\( x = 1.0 \)[/tex]:
- [tex]\( y = 4(1.0) - 1 = 3 \)[/tex]
- [tex]\( y = -3(1.0) + 5 = 2 \)[/tex]
- The y-values are not equal.
Conclusively, by checking all the provided x-values and corresponding y-values, we see that there is no single x-value where the y-values from [tex]\( y = 4x - 1 \)[/tex] and [tex]\( y = -3x + 5 \)[/tex] are equal.
Therefore, there is no solution to the system of equations within the specified range of x-values between 0.5 and 1.0.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.