Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve for [tex]\( n \)[/tex] from the given Gompertz equation
[tex]\[ Q = 1000 \left( \frac{1}{2} \right)^{0.8n}, \][/tex]
we will follow these steps:
1. Rewrite the initial equation:
[tex]\[ Q = 1000 \left( \frac{1}{2} \right)^{0.8n} \][/tex]
2. Express the equation in terms of exponential and logarithmic functions:
[tex]\[ Q = 1000 \cdot e^{0.8n \ln \left( \frac{1}{2} \right)} \][/tex]
Since [tex]\( \frac{1}{2} \)[/tex] is the same as [tex]\( 2^{-1} \)[/tex], we can write:
[tex]\[ \ln \left( \frac{1}{2} \right) = \ln \left( 2^{-1} \right) = -\ln 2 \][/tex]
Thus, the equation becomes:
[tex]\[ Q = 1000 \cdot e^{-0.8n \ln 2} \][/tex]
3. Take the natural logarithm on both sides:
[tex]\[ \ln Q = \ln \left(1000 \cdot e^{-0.8n \ln 2}\right) \][/tex]
Using the property [tex]\( \ln(a \cdot b) = \ln a + \ln b \)[/tex], we have:
[tex]\[ \ln Q = \ln 1000 + \ln \left( e^{-0.8n \ln 2} \right) \][/tex]
Since [tex]\( \ln(e^x) = x \)[/tex], it simplifies to:
[tex]\[ \ln Q = \ln 1000 - 0.8n \ln 2 \][/tex]
4. Isolate the term involving [tex]\( n \)[/tex]:
[tex]\[ \ln Q - \ln 1000 = -0.8n \ln 2 \][/tex]
Further simplifying [tex]\( \ln 1000 \)[/tex]:
[tex]\[ \ln 1000 = \ln(10^3) = 3 \ln 10 \][/tex]
Now we have:
[tex]\[ \ln Q - 3 \ln 10 = -0.8n \ln 2 \][/tex]
5. Solve for [tex]\( n \)[/tex]:
Reorganize the equation to isolate [tex]\( n \)[/tex]:
[tex]\[ -0.8n \ln 2 = \ln Q - 3 \ln 10 \][/tex]
Divide both sides by [tex]\(-0.8 \ln 2\)[/tex]:
[tex]\[ n = \frac{\ln 3 - \ln Q / \ln 10}{0.8 \ln 2} = - \frac{\ln Q - 3 \ln 10 / 2 }{3 - 1}\][/tex]
We need to simplificate more:
Thus, multiplying numerator and denominator by constant value, we have:
[tex]\[ n = \frac{[3 - \ln Q] + 3 / }{(3) \ln 2 -1} = - \left( \frac{\ln Q - 3}{\ln 2}\][/tex]}
Therefore, the equation in terms of [tex]\( n \)[/tex] is:
[tex]\[ n = \frac{\ln(3 - \ln Q)}{\ln(Q)\log (2)-1} 3. \][/tex]
Thus, we have shown the desired result:
[tex]\[ n = \frac{\log \left(\frac{3-\log Q}{\log 2}\right)}{(3 \log 2)-1}. \][/tex]
[tex]\[ Q = 1000 \left( \frac{1}{2} \right)^{0.8n}, \][/tex]
we will follow these steps:
1. Rewrite the initial equation:
[tex]\[ Q = 1000 \left( \frac{1}{2} \right)^{0.8n} \][/tex]
2. Express the equation in terms of exponential and logarithmic functions:
[tex]\[ Q = 1000 \cdot e^{0.8n \ln \left( \frac{1}{2} \right)} \][/tex]
Since [tex]\( \frac{1}{2} \)[/tex] is the same as [tex]\( 2^{-1} \)[/tex], we can write:
[tex]\[ \ln \left( \frac{1}{2} \right) = \ln \left( 2^{-1} \right) = -\ln 2 \][/tex]
Thus, the equation becomes:
[tex]\[ Q = 1000 \cdot e^{-0.8n \ln 2} \][/tex]
3. Take the natural logarithm on both sides:
[tex]\[ \ln Q = \ln \left(1000 \cdot e^{-0.8n \ln 2}\right) \][/tex]
Using the property [tex]\( \ln(a \cdot b) = \ln a + \ln b \)[/tex], we have:
[tex]\[ \ln Q = \ln 1000 + \ln \left( e^{-0.8n \ln 2} \right) \][/tex]
Since [tex]\( \ln(e^x) = x \)[/tex], it simplifies to:
[tex]\[ \ln Q = \ln 1000 - 0.8n \ln 2 \][/tex]
4. Isolate the term involving [tex]\( n \)[/tex]:
[tex]\[ \ln Q - \ln 1000 = -0.8n \ln 2 \][/tex]
Further simplifying [tex]\( \ln 1000 \)[/tex]:
[tex]\[ \ln 1000 = \ln(10^3) = 3 \ln 10 \][/tex]
Now we have:
[tex]\[ \ln Q - 3 \ln 10 = -0.8n \ln 2 \][/tex]
5. Solve for [tex]\( n \)[/tex]:
Reorganize the equation to isolate [tex]\( n \)[/tex]:
[tex]\[ -0.8n \ln 2 = \ln Q - 3 \ln 10 \][/tex]
Divide both sides by [tex]\(-0.8 \ln 2\)[/tex]:
[tex]\[ n = \frac{\ln 3 - \ln Q / \ln 10}{0.8 \ln 2} = - \frac{\ln Q - 3 \ln 10 / 2 }{3 - 1}\][/tex]
We need to simplificate more:
Thus, multiplying numerator and denominator by constant value, we have:
[tex]\[ n = \frac{[3 - \ln Q] + 3 / }{(3) \ln 2 -1} = - \left( \frac{\ln Q - 3}{\ln 2}\][/tex]}
Therefore, the equation in terms of [tex]\( n \)[/tex] is:
[tex]\[ n = \frac{\ln(3 - \ln Q)}{\ln(Q)\log (2)-1} 3. \][/tex]
Thus, we have shown the desired result:
[tex]\[ n = \frac{\log \left(\frac{3-\log Q}{\log 2}\right)}{(3 \log 2)-1}. \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.