Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Solve the system using any method you choose:

[tex]\[
\begin{cases}
-3x + 6y = 24 \\
-2x - y = 1
\end{cases}
\][/tex]

A. (3, -2)

B. (-2, 3)

C. (-3, 2)

D. (3, 2)

E. (2, 3)

Sagot :

To solve the system of equations, we need to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations simultaneously. The system of equations given is:

[tex]\[ -3x + 6y = 24 \quad \text{(Equation 1)} \][/tex]
[tex]\[ -2x - y = 1 \quad \text{(Equation 2)} \][/tex]

Let's use the method of elimination to solve this system step-by-step:

1. Equation Simplification:

First, we can simplify Equation 1 by dividing every term by 3:

[tex]\[ -3x + 6y = 24 \implies -x + 2y = 8 \][/tex]

Hence, the system of equations now looks like this:

[tex]\[ -x + 2y = 8 \quad \text{(Simplified Equation 1)} \][/tex]
[tex]\[ -2x - y = 1 \quad \text{(Equation 2)} \][/tex]

2. Elimination:

Now, let's eliminate one of the variables. We can start by multiplying Simplified Equation 1 by 2, to align it with the [tex]\( x \)[/tex]-terms in Equation 2:

[tex]\[ -2(-x + 2y) = -2 \cdot 8 \implies -2x + 4y = 16 \][/tex]

Subtract Equation 2 from this new equation:

[tex]\[ (-2x + 4y) - (-2x - y) = 16 - 1 \][/tex]

Simplifying the left-hand side, we get:

[tex]\[ -2x + 4y + 2x + y = 15 \][/tex]

This reduces to:

[tex]\[ 5y = 15 \][/tex]

Solving for [tex]\( y \)[/tex], we divide both sides by 5:

[tex]\[ y = 3 \][/tex]

3. Substitute [tex]\( y \)[/tex] back into one of the original equations:

Let's use Simplified Equation 1 to find [tex]\( x \)[/tex]:

[tex]\[ -x + 2y = 8 \][/tex]

Substitute [tex]\( y = 3 \)[/tex]:

[tex]\[ -x + 2(3) = 8 \][/tex]

Simplify:

[tex]\[ -x + 6 = 8 \][/tex]

Solving for [tex]\( x \)[/tex]:

[tex]\[ -x = 8 - 6 \][/tex]
[tex]\[ -x = 2 \][/tex]
[tex]\[ x = -2 \][/tex]

4. Solution:

The solution to the system of equations is:
[tex]\[ (x, y) = (-2, 3) \][/tex]

Thus, the correct answer is [tex]\((-2, 3)\)[/tex].