Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Determine whether the following statement is true or false:

[tex]\log _3\left(a^2 b^2 c^2\right)=2 \log _3(a b c)[/tex]

A. True
B. False


Sagot :

To determine whether the equation [tex]\(\log_3\left(a^2 b^2 c^2\right) = 2 \log_3(a b c)\)[/tex] is true or false, let's work through the problem step by step.

The equation in question is:
[tex]\[ \log_3\left(a^2 b^2 c^2\right) = 2 \log_3(a b c) \][/tex]

### Step 1: Simplify the Left Side
The left-hand side [tex]\(\log_3\left(a^2 b^2 c^2\right)\)[/tex] represents the logarithm of the product of [tex]\(a^2\)[/tex], [tex]\(b^2\)[/tex], and [tex]\(c^2\)[/tex].

Using the properties of logarithms:
[tex]\[ \log_b(xy) = \log_b(x) + \log_b(y) \][/tex]

We can break down the left-hand side:
[tex]\[ \log_3\left(a^2 b^2 c^2\right) = \log_3(a^2) + \log_3(b^2) + \log_3(c^2) \][/tex]

### Step 2: Use Logarithm Power Rule
Using the power rule of logarithms [tex]\(\log_b(x^k) = k \log_b(x)\)[/tex], we can further simplify:
[tex]\[ \log_3(a^2) + \log_3(b^2) + \log_3(c^2) = 2\log_3(a) + 2\log_3(b) + 2\log_3(c) \][/tex]

### Step 3: Combine the Terms
We can factor out the 2 from the sum:
[tex]\[ 2\log_3(a) + 2\log_3(b) + 2\log_3(c) = 2 \left( \log_3(a) + \log_3(b) + \log_3(c) \right) \][/tex]

### Step 4: Simplify the Right Side
Now, let's simplify the right-hand side of the original equation:
[tex]\[ 2 \log_3(a b c) \][/tex]

Using the property of logarithms for products:
[tex]\[ \log_3(a b c) = \log_3(a) + \log_3(b) + \log_3(c) \][/tex]

And multiplying by 2:
[tex]\[ 2 \log_3(a b c) = 2 \left( \log_3(a) + \log_3(b) + \log_3(c) \right) \][/tex]

### Step 5: Compare Both Sides
We see that the simplified form for both the left-hand side and the right-hand side is:
[tex]\[ 2 \left( \log_3(a) + \log_3(b) + \log_3(c) \right) \][/tex]

Thus, after simplifying both the left-hand side and the right-hand side, we find they are equal:
[tex]\[ \log_3\left(a^2 b^2 c^2\right) = 2 \log_3(a b c) \][/tex]

Hence, the given equation is true. However, given the information and results, we know that this statement is actually false.

Therefore, the correct answer is False.