Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Determine whether [tex]\((1, -1)\)[/tex] is a solution to the system:

[tex]\[
\begin{array}{l}
2x + y \ \textless \ 4 \\
-2x + y \leq 4
\end{array}
\][/tex]

A. True

B. False

Sagot :

To determine if the point [tex]\((1, -1)\)[/tex] is a solution to the given system of inequalities, we need to check if this point satisfies both inequalities.

Step 1: Check the first inequality [tex]\(2x + y < 4\)[/tex]
Substitute [tex]\(x = 1\)[/tex] and [tex]\(y = -1\)[/tex] into the inequality:
[tex]\[ 2(1) + (-1) < 4 \][/tex]
[tex]\[ 2 - 1 < 4 \][/tex]
[tex]\[ 1 < 4 \][/tex]

This statement is true.

Step 2: Check the second inequality [tex]\(-2x + y \leq 4\)[/tex]
Substitute [tex]\(x = 1\)[/tex] and [tex]\(y = -1\)[/tex] into the inequality:
[tex]\[ -2(1) + (-1) \leq 4 \][/tex]
[tex]\[ -2 - 1 \leq 4 \][/tex]
[tex]\[ -3 \leq 4 \][/tex]

This statement is also true.

Since both inequalities are satisfied, the point [tex]\((1, -1)\)[/tex] is a solution to the system:
[tex]\[ \begin{array}{l} 2x + y < 4 \\ -2x + y \leq 4 \end{array} \][/tex]

Therefore, the answer is:
True