Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine if the point [tex]\((1, -1)\)[/tex] is a solution to the given system of inequalities, we need to check if this point satisfies both inequalities.
Step 1: Check the first inequality [tex]\(2x + y < 4\)[/tex]
Substitute [tex]\(x = 1\)[/tex] and [tex]\(y = -1\)[/tex] into the inequality:
[tex]\[ 2(1) + (-1) < 4 \][/tex]
[tex]\[ 2 - 1 < 4 \][/tex]
[tex]\[ 1 < 4 \][/tex]
This statement is true.
Step 2: Check the second inequality [tex]\(-2x + y \leq 4\)[/tex]
Substitute [tex]\(x = 1\)[/tex] and [tex]\(y = -1\)[/tex] into the inequality:
[tex]\[ -2(1) + (-1) \leq 4 \][/tex]
[tex]\[ -2 - 1 \leq 4 \][/tex]
[tex]\[ -3 \leq 4 \][/tex]
This statement is also true.
Since both inequalities are satisfied, the point [tex]\((1, -1)\)[/tex] is a solution to the system:
[tex]\[ \begin{array}{l} 2x + y < 4 \\ -2x + y \leq 4 \end{array} \][/tex]
Therefore, the answer is:
True
Step 1: Check the first inequality [tex]\(2x + y < 4\)[/tex]
Substitute [tex]\(x = 1\)[/tex] and [tex]\(y = -1\)[/tex] into the inequality:
[tex]\[ 2(1) + (-1) < 4 \][/tex]
[tex]\[ 2 - 1 < 4 \][/tex]
[tex]\[ 1 < 4 \][/tex]
This statement is true.
Step 2: Check the second inequality [tex]\(-2x + y \leq 4\)[/tex]
Substitute [tex]\(x = 1\)[/tex] and [tex]\(y = -1\)[/tex] into the inequality:
[tex]\[ -2(1) + (-1) \leq 4 \][/tex]
[tex]\[ -2 - 1 \leq 4 \][/tex]
[tex]\[ -3 \leq 4 \][/tex]
This statement is also true.
Since both inequalities are satisfied, the point [tex]\((1, -1)\)[/tex] is a solution to the system:
[tex]\[ \begin{array}{l} 2x + y < 4 \\ -2x + y \leq 4 \end{array} \][/tex]
Therefore, the answer is:
True
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.