Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve for [tex]\( y \)[/tex] by eliminating the [tex]\( x \)[/tex] terms in the given system of equations:
First equation: [tex]\( 6x - 5y = 17 \)[/tex]
Second equation: [tex]\( 7x + 3y = 11 \)[/tex]
We need to make the coefficients of the [tex]\( x \)[/tex] terms equal in magnitude but opposite in sign. Here’s a step-by-step solution to achieve that:
1. Identify the coefficients of [tex]\( x \)[/tex]:
- In the first equation, the coefficient of [tex]\( x \)[/tex] is 6.
- In the second equation, the coefficient of [tex]\( x \)[/tex] is 7.
2. Determine how to equalize the coefficients:
- To eliminate [tex]\( x \)[/tex], we can make the coefficients of [tex]\( x \)[/tex] in the two equations equal in magnitude but opposite in sign.
- We will use the least common multiple (LCM) of the coefficients of [tex]\( x \)[/tex], which is 42. This means we want the coefficients of [tex]\( x \)[/tex] to become [tex]\( +42 \)[/tex] and [tex]\( -42 \)[/tex].
3. Decide on the multipliers to reach the target coefficients:
- Multiply the first equation by 7:
[tex]\[ 6 \cdot 7 = 42 \][/tex]
- Multiply the second equation by -6:
[tex]\[ 7 \cdot (-6) = -42 \][/tex]
4. Apply the chosen multipliers to each equation:
- The first equation multiplied by 7 becomes:
[tex]\[ 7 \cdot (6x - 5y) = 7 \cdot 17 \][/tex]
[tex]\[ 42x - 35y = 119 \][/tex]
- The second equation multiplied by -6 becomes:
[tex]\[ -6 \cdot (7x + 3y) = -6 \cdot 11 \][/tex]
[tex]\[ -42x - 18y = -66 \][/tex]
5. Add the two resulting equations to eliminate [tex]\( x \)[/tex]:
[tex]\[ (42x - 35y) + (-42x - 18y) = 119 + (-66) \][/tex]
[tex]\[ 0x - 53y = 53 \][/tex]
[tex]\[ -53y = 53 \][/tex]
Thus, the correct multipliers to eliminate [tex]\( x \)[/tex] and solve for [tex]\( y \)[/tex] are 7 for the first equation and -6 for the second equation.
Therefore, the answer is:
The first equation should be multiplied by 7 and the second equation by -6.
First equation: [tex]\( 6x - 5y = 17 \)[/tex]
Second equation: [tex]\( 7x + 3y = 11 \)[/tex]
We need to make the coefficients of the [tex]\( x \)[/tex] terms equal in magnitude but opposite in sign. Here’s a step-by-step solution to achieve that:
1. Identify the coefficients of [tex]\( x \)[/tex]:
- In the first equation, the coefficient of [tex]\( x \)[/tex] is 6.
- In the second equation, the coefficient of [tex]\( x \)[/tex] is 7.
2. Determine how to equalize the coefficients:
- To eliminate [tex]\( x \)[/tex], we can make the coefficients of [tex]\( x \)[/tex] in the two equations equal in magnitude but opposite in sign.
- We will use the least common multiple (LCM) of the coefficients of [tex]\( x \)[/tex], which is 42. This means we want the coefficients of [tex]\( x \)[/tex] to become [tex]\( +42 \)[/tex] and [tex]\( -42 \)[/tex].
3. Decide on the multipliers to reach the target coefficients:
- Multiply the first equation by 7:
[tex]\[ 6 \cdot 7 = 42 \][/tex]
- Multiply the second equation by -6:
[tex]\[ 7 \cdot (-6) = -42 \][/tex]
4. Apply the chosen multipliers to each equation:
- The first equation multiplied by 7 becomes:
[tex]\[ 7 \cdot (6x - 5y) = 7 \cdot 17 \][/tex]
[tex]\[ 42x - 35y = 119 \][/tex]
- The second equation multiplied by -6 becomes:
[tex]\[ -6 \cdot (7x + 3y) = -6 \cdot 11 \][/tex]
[tex]\[ -42x - 18y = -66 \][/tex]
5. Add the two resulting equations to eliminate [tex]\( x \)[/tex]:
[tex]\[ (42x - 35y) + (-42x - 18y) = 119 + (-66) \][/tex]
[tex]\[ 0x - 53y = 53 \][/tex]
[tex]\[ -53y = 53 \][/tex]
Thus, the correct multipliers to eliminate [tex]\( x \)[/tex] and solve for [tex]\( y \)[/tex] are 7 for the first equation and -6 for the second equation.
Therefore, the answer is:
The first equation should be multiplied by 7 and the second equation by -6.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.