Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the equation of a line parallel to [tex]\( y = -\frac{1}{2} x - 1 \)[/tex] that passes through the point [tex]\((-4, 8)\)[/tex], we proceed as follows:
1. Identify the slope of the given line:
The given line is [tex]\( y = -\frac{1}{2} x - 1 \)[/tex]. This equation is in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
Thus, the slope [tex]\( m \)[/tex] of the given line is [tex]\( -\frac{1}{2} \)[/tex].
2. Slope of the parallel line:
Lines that are parallel have the same slope. Therefore, the slope of the line we need to find is also [tex]\( -\frac{1}{2} \)[/tex].
3. Use the point-slope form of the line equation:
The point-slope form of a line equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
Here, our point is [tex]\((-4, 8)\)[/tex] and our slope is [tex]\( -\frac{1}{2} \)[/tex].
Substituting the point and the slope into the point-slope form:
[tex]\[ y - 8 = -\frac{1}{2}(x + 4) \][/tex]
4. Simplify the equation:
Let's distribute the slope [tex]\( -\frac{1}{2} \)[/tex]:
[tex]\[ y - 8 = -\frac{1}{2}x - \frac{1}{2} \cdot 4 \][/tex]
Simplify further:
[tex]\[ y - 8 = -\frac{1}{2}x - 2 \][/tex]
Now, add 8 to both sides to get the equation in slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y = -\frac{1}{2}x - 2 + 8 \][/tex]
[tex]\[ y = -\frac{1}{2}x + 6 \][/tex]
5. Conclusion:
Therefore, the equation of the line that passes through [tex]\((-4, 8)\)[/tex] and is parallel to [tex]\( y = -\frac{1}{2} x - 1 \)[/tex] is:
[tex]\[ y = -\frac{1}{2} x + 6 \][/tex]
Thus, the correct choice from the given options is:
[tex]\[ y = -\frac{1}{2} x + 6 \][/tex]
1. Identify the slope of the given line:
The given line is [tex]\( y = -\frac{1}{2} x - 1 \)[/tex]. This equation is in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
Thus, the slope [tex]\( m \)[/tex] of the given line is [tex]\( -\frac{1}{2} \)[/tex].
2. Slope of the parallel line:
Lines that are parallel have the same slope. Therefore, the slope of the line we need to find is also [tex]\( -\frac{1}{2} \)[/tex].
3. Use the point-slope form of the line equation:
The point-slope form of a line equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
Here, our point is [tex]\((-4, 8)\)[/tex] and our slope is [tex]\( -\frac{1}{2} \)[/tex].
Substituting the point and the slope into the point-slope form:
[tex]\[ y - 8 = -\frac{1}{2}(x + 4) \][/tex]
4. Simplify the equation:
Let's distribute the slope [tex]\( -\frac{1}{2} \)[/tex]:
[tex]\[ y - 8 = -\frac{1}{2}x - \frac{1}{2} \cdot 4 \][/tex]
Simplify further:
[tex]\[ y - 8 = -\frac{1}{2}x - 2 \][/tex]
Now, add 8 to both sides to get the equation in slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y = -\frac{1}{2}x - 2 + 8 \][/tex]
[tex]\[ y = -\frac{1}{2}x + 6 \][/tex]
5. Conclusion:
Therefore, the equation of the line that passes through [tex]\((-4, 8)\)[/tex] and is parallel to [tex]\( y = -\frac{1}{2} x - 1 \)[/tex] is:
[tex]\[ y = -\frac{1}{2} x + 6 \][/tex]
Thus, the correct choice from the given options is:
[tex]\[ y = -\frac{1}{2} x + 6 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.