At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which values are solutions to the quadratic equation [tex]\( x^2 + 2x = 8 \)[/tex], we first need to rewrite the equation in its standard form, which is [tex]\( ax^2 + bx + c = 0 \)[/tex].
Starting with the given equation:
[tex]\[ x^2 + 2x = 8 \][/tex]
Subtract 8 from both sides to set the equation to 0:
[tex]\[ x^2 + 2x - 8 = 0 \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -8 \)[/tex].
Next, we solve this quadratic equation using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Plugging in [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -8 \)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-8)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{4 + 32}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{36}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm 6}{2} \][/tex]
We now compute the two possible solutions:
[tex]\[ x_1 = \frac{-2 + 6}{2} = \frac{4}{2} = 2 \][/tex]
[tex]\[ x_2 = \frac{-2 - 6}{2} = \frac{-8}{2} = -4 \][/tex]
Thus, the solutions to the quadratic equation [tex]\( x^2 + 2x - 8 = 0 \)[/tex] are [tex]\( x = 2 \)[/tex] and [tex]\( x = -4 \)[/tex].
Now we check which of the given options match these solutions:
A. 6
B. -1
C. -4
D. 2
E. 8
From our calculation, the solutions are 2 and -4. Therefore, the correct answers are:
C. -4
D. 2
Starting with the given equation:
[tex]\[ x^2 + 2x = 8 \][/tex]
Subtract 8 from both sides to set the equation to 0:
[tex]\[ x^2 + 2x - 8 = 0 \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -8 \)[/tex].
Next, we solve this quadratic equation using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Plugging in [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -8 \)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-8)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{4 + 32}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{36}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm 6}{2} \][/tex]
We now compute the two possible solutions:
[tex]\[ x_1 = \frac{-2 + 6}{2} = \frac{4}{2} = 2 \][/tex]
[tex]\[ x_2 = \frac{-2 - 6}{2} = \frac{-8}{2} = -4 \][/tex]
Thus, the solutions to the quadratic equation [tex]\( x^2 + 2x - 8 = 0 \)[/tex] are [tex]\( x = 2 \)[/tex] and [tex]\( x = -4 \)[/tex].
Now we check which of the given options match these solutions:
A. 6
B. -1
C. -4
D. 2
E. 8
From our calculation, the solutions are 2 and -4. Therefore, the correct answers are:
C. -4
D. 2
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.