Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's solve the given expression step-by-step: [tex]\(2 \log_7 \left(\sqrt[7]{343}\right)\)[/tex].
1. Identify the inner expression:
[tex]\[ \sqrt[7]{343} \][/tex]
This is the 7th root of 343.
2. Write 343 as a power of 7:
[tex]\[ 343 = 7^3 \][/tex]
So we rewrite the inner expression as:
[tex]\[ \sqrt[7]{7^3} = (7^3)^{1/7} \][/tex]
3. Simplify the exponent:
[tex]\[ (7^3)^{1/7} = 7^{3/7} \][/tex]
4. Take the logarithm:
The logarithm expression becomes:
[tex]\[ \log_7 \left(7^{3/7}\right) \][/tex]
Using the logarithmic property [tex]\(\log_b (a^c) = c \cdot \log_b (a)\)[/tex], where [tex]\(b\)[/tex] is the base, [tex]\(a\)[/tex] is the argument, and [tex]\(c\)[/tex] is the exponent, we have:
[tex]\[ \log_7 \left(7^{3/7}\right) = \frac{3}{7} \log_7 (7) \][/tex]
5. Simplify using the identity [tex]\(\log_b (b) = 1\)[/tex]:
Since [tex]\(\log_7 (7) = 1\)[/tex], the expression becomes:
[tex]\[ \frac{3}{7} \cdot 1 = \frac{3}{7} \][/tex]
6. Multiply by 2:
Finally, we need to multiply this result by 2:
[tex]\[ 2 \cdot \frac{3}{7} = \frac{6}{7} \][/tex]
Converting the fraction to a decimal for the final result, [tex]\(\frac{6}{7} \approx 0.8571428571428571\)[/tex].
Therefore, the value of the expression [tex]\(2 \log_7 \left(\sqrt[7]{343}\right)\)[/tex] is approximately [tex]\(0.8571428571428571\)[/tex].
1. Identify the inner expression:
[tex]\[ \sqrt[7]{343} \][/tex]
This is the 7th root of 343.
2. Write 343 as a power of 7:
[tex]\[ 343 = 7^3 \][/tex]
So we rewrite the inner expression as:
[tex]\[ \sqrt[7]{7^3} = (7^3)^{1/7} \][/tex]
3. Simplify the exponent:
[tex]\[ (7^3)^{1/7} = 7^{3/7} \][/tex]
4. Take the logarithm:
The logarithm expression becomes:
[tex]\[ \log_7 \left(7^{3/7}\right) \][/tex]
Using the logarithmic property [tex]\(\log_b (a^c) = c \cdot \log_b (a)\)[/tex], where [tex]\(b\)[/tex] is the base, [tex]\(a\)[/tex] is the argument, and [tex]\(c\)[/tex] is the exponent, we have:
[tex]\[ \log_7 \left(7^{3/7}\right) = \frac{3}{7} \log_7 (7) \][/tex]
5. Simplify using the identity [tex]\(\log_b (b) = 1\)[/tex]:
Since [tex]\(\log_7 (7) = 1\)[/tex], the expression becomes:
[tex]\[ \frac{3}{7} \cdot 1 = \frac{3}{7} \][/tex]
6. Multiply by 2:
Finally, we need to multiply this result by 2:
[tex]\[ 2 \cdot \frac{3}{7} = \frac{6}{7} \][/tex]
Converting the fraction to a decimal for the final result, [tex]\(\frac{6}{7} \approx 0.8571428571428571\)[/tex].
Therefore, the value of the expression [tex]\(2 \log_7 \left(\sqrt[7]{343}\right)\)[/tex] is approximately [tex]\(0.8571428571428571\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.