Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let’s find the value of [tex]\( \log_5(2) \)[/tex] step-by-step.
### Steps to Solve [tex]\( \log_5(2) \)[/tex]
1. Understand the Problem:
- The problem requires finding the logarithm of 2 with base 5, denoted as [tex]\( \log_5(2) \)[/tex]. This tells us the power to which 5 needs to be raised to yield 2.
2. Use the Change of Base Formula:
- The change of base formula for logarithms states that:
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
- Here, [tex]\( a = 2 \)[/tex], [tex]\( b = 5 \)[/tex], and we can use any common logarithm base [tex]\( c \)[/tex] such as 10 (common logarithm [tex]\(\log\)[/tex]) or [tex]\( e \)[/tex] (natural logarithm [tex]\(\ln\)[/tex]). For convenience, we'll use the natural logarithm [tex]\( \ln \)[/tex], but the common logarithm would work equally well.
3. Apply the Formula:
- Plugging in the values, we get:
[tex]\[ \log_5(2) = \frac{\ln(2)}{\ln(5)} \][/tex]
4. Evaluate the Natural Logarithms:
- Using a calculator or mathematical tables, find the natural logarithms of 2 and 5:
[tex]\[ \ln(2) \approx 0.693147 \quad \text{and} \quad \ln(5) \approx 1.609438 \][/tex]
5. Compute the Quotient:
- Next, divide the natural logarithm of 2 by the natural logarithm of 5:
[tex]\[ \log_5(2) = \frac{0.693147}{1.609438} \approx 0.430677 \][/tex]
Therefore, the value of [tex]\( \log_5(2) \)[/tex] is approximately [tex]\( 0.43067655807339306 \)[/tex].
### Steps to Solve [tex]\( \log_5(2) \)[/tex]
1. Understand the Problem:
- The problem requires finding the logarithm of 2 with base 5, denoted as [tex]\( \log_5(2) \)[/tex]. This tells us the power to which 5 needs to be raised to yield 2.
2. Use the Change of Base Formula:
- The change of base formula for logarithms states that:
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
- Here, [tex]\( a = 2 \)[/tex], [tex]\( b = 5 \)[/tex], and we can use any common logarithm base [tex]\( c \)[/tex] such as 10 (common logarithm [tex]\(\log\)[/tex]) or [tex]\( e \)[/tex] (natural logarithm [tex]\(\ln\)[/tex]). For convenience, we'll use the natural logarithm [tex]\( \ln \)[/tex], but the common logarithm would work equally well.
3. Apply the Formula:
- Plugging in the values, we get:
[tex]\[ \log_5(2) = \frac{\ln(2)}{\ln(5)} \][/tex]
4. Evaluate the Natural Logarithms:
- Using a calculator or mathematical tables, find the natural logarithms of 2 and 5:
[tex]\[ \ln(2) \approx 0.693147 \quad \text{and} \quad \ln(5) \approx 1.609438 \][/tex]
5. Compute the Quotient:
- Next, divide the natural logarithm of 2 by the natural logarithm of 5:
[tex]\[ \log_5(2) = \frac{0.693147}{1.609438} \approx 0.430677 \][/tex]
Therefore, the value of [tex]\( \log_5(2) \)[/tex] is approximately [tex]\( 0.43067655807339306 \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.