Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let’s find the value of [tex]\( \log_5(2) \)[/tex] step-by-step.
### Steps to Solve [tex]\( \log_5(2) \)[/tex]
1. Understand the Problem:
- The problem requires finding the logarithm of 2 with base 5, denoted as [tex]\( \log_5(2) \)[/tex]. This tells us the power to which 5 needs to be raised to yield 2.
2. Use the Change of Base Formula:
- The change of base formula for logarithms states that:
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
- Here, [tex]\( a = 2 \)[/tex], [tex]\( b = 5 \)[/tex], and we can use any common logarithm base [tex]\( c \)[/tex] such as 10 (common logarithm [tex]\(\log\)[/tex]) or [tex]\( e \)[/tex] (natural logarithm [tex]\(\ln\)[/tex]). For convenience, we'll use the natural logarithm [tex]\( \ln \)[/tex], but the common logarithm would work equally well.
3. Apply the Formula:
- Plugging in the values, we get:
[tex]\[ \log_5(2) = \frac{\ln(2)}{\ln(5)} \][/tex]
4. Evaluate the Natural Logarithms:
- Using a calculator or mathematical tables, find the natural logarithms of 2 and 5:
[tex]\[ \ln(2) \approx 0.693147 \quad \text{and} \quad \ln(5) \approx 1.609438 \][/tex]
5. Compute the Quotient:
- Next, divide the natural logarithm of 2 by the natural logarithm of 5:
[tex]\[ \log_5(2) = \frac{0.693147}{1.609438} \approx 0.430677 \][/tex]
Therefore, the value of [tex]\( \log_5(2) \)[/tex] is approximately [tex]\( 0.43067655807339306 \)[/tex].
### Steps to Solve [tex]\( \log_5(2) \)[/tex]
1. Understand the Problem:
- The problem requires finding the logarithm of 2 with base 5, denoted as [tex]\( \log_5(2) \)[/tex]. This tells us the power to which 5 needs to be raised to yield 2.
2. Use the Change of Base Formula:
- The change of base formula for logarithms states that:
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
- Here, [tex]\( a = 2 \)[/tex], [tex]\( b = 5 \)[/tex], and we can use any common logarithm base [tex]\( c \)[/tex] such as 10 (common logarithm [tex]\(\log\)[/tex]) or [tex]\( e \)[/tex] (natural logarithm [tex]\(\ln\)[/tex]). For convenience, we'll use the natural logarithm [tex]\( \ln \)[/tex], but the common logarithm would work equally well.
3. Apply the Formula:
- Plugging in the values, we get:
[tex]\[ \log_5(2) = \frac{\ln(2)}{\ln(5)} \][/tex]
4. Evaluate the Natural Logarithms:
- Using a calculator or mathematical tables, find the natural logarithms of 2 and 5:
[tex]\[ \ln(2) \approx 0.693147 \quad \text{and} \quad \ln(5) \approx 1.609438 \][/tex]
5. Compute the Quotient:
- Next, divide the natural logarithm of 2 by the natural logarithm of 5:
[tex]\[ \log_5(2) = \frac{0.693147}{1.609438} \approx 0.430677 \][/tex]
Therefore, the value of [tex]\( \log_5(2) \)[/tex] is approximately [tex]\( 0.43067655807339306 \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.