Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine if the point [tex]\((2,3)\)[/tex] is a solution to the system of linear equations:
[tex]\[ \begin{array}{l} y = 2x - 1 \\ y = x + 1 \end{array} \][/tex]
we need to check if substituting [tex]\(x = 2\)[/tex] and [tex]\(y = 3\)[/tex] into both equations makes them true.
1. Check the first equation: [tex]\(y = 2x - 1\)[/tex]
Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 3\)[/tex]:
[tex]\[ 3 = 2(2) - 1 \][/tex]
Simplify the right side:
[tex]\[ 3 = 4 - 1 \][/tex]
[tex]\[ 3 = 3 \][/tex]
This equation is satisfied.
2. Check the second equation: [tex]\(y = x + 1\)[/tex]
Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 3\)[/tex]:
[tex]\[ 3 = 2 + 1 \][/tex]
Simplify the right side:
[tex]\[ 3 = 3 \][/tex]
This equation is also satisfied.
Since both equations are satisfied when [tex]\(x = 2\)[/tex] and [tex]\(y = 3\)[/tex], the point [tex]\((2,3)\)[/tex] satisfies the system of linear equations.
Therefore, the statement:
[tex]$(2,3)$[/tex] is a solution to the following system of linear equations:
[tex]\[ \begin{array}{l} y = 2 x - 1 \\ y = x + 1 \end{array} \][/tex]
is True.
[tex]\[ \begin{array}{l} y = 2x - 1 \\ y = x + 1 \end{array} \][/tex]
we need to check if substituting [tex]\(x = 2\)[/tex] and [tex]\(y = 3\)[/tex] into both equations makes them true.
1. Check the first equation: [tex]\(y = 2x - 1\)[/tex]
Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 3\)[/tex]:
[tex]\[ 3 = 2(2) - 1 \][/tex]
Simplify the right side:
[tex]\[ 3 = 4 - 1 \][/tex]
[tex]\[ 3 = 3 \][/tex]
This equation is satisfied.
2. Check the second equation: [tex]\(y = x + 1\)[/tex]
Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 3\)[/tex]:
[tex]\[ 3 = 2 + 1 \][/tex]
Simplify the right side:
[tex]\[ 3 = 3 \][/tex]
This equation is also satisfied.
Since both equations are satisfied when [tex]\(x = 2\)[/tex] and [tex]\(y = 3\)[/tex], the point [tex]\((2,3)\)[/tex] satisfies the system of linear equations.
Therefore, the statement:
[tex]$(2,3)$[/tex] is a solution to the following system of linear equations:
[tex]\[ \begin{array}{l} y = 2 x - 1 \\ y = x + 1 \end{array} \][/tex]
is True.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.