Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the possible rational zeros of the polynomial [tex]\( f(x) = 4x^3 - 12x^2 - 35x - 12 \)[/tex], we use the Rational Root Theorem. This theorem states that any rational zero, [tex]\(\frac{p}{q}\)[/tex], of a polynomial with integer coefficients is such that:
- [tex]\(p\)[/tex] is a factor of the constant term (the term without [tex]\(x\)[/tex]), which is [tex]\(-12\)[/tex].
- [tex]\(q\)[/tex] is a factor of the leading coefficient (the coefficient of the term with the highest power of [tex]\(x\)[/tex]), which is [tex]\(4\)[/tex].
### Step 1: Identify the factors of the constant term and leading coefficient
- The factors of [tex]\(-12\)[/tex] (constant term) are: [tex]\(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\)[/tex].
- The factors of [tex]\(4\)[/tex] (leading coefficient) are: [tex]\(\pm 1, \pm 2, \pm 4\)[/tex].
### Step 2: Generate all possible rational zeros
Using the factors identified, we can list all possible rational zeros [tex]\(\frac{p}{q}\)[/tex]:
[tex]\[ \frac{p}{q} = \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{1}{4}, \pm \frac{3}{4} \][/tex]
Putting them all together in a sorted order, we get the following possible rational zeros:
[tex]\[ -12, -6, -4, -3, -2, -\frac{3}{2}, -1, -\frac{3}{4}, -\frac{1}{2}, -\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \frac{3}{2}, 2, 3, 4, 6, 12 \][/tex]
### Step 3: Test each potential rational zero to find the actual rational zeros
By evaluating [tex]\( f(x) \)[/tex] at each of the possible rational zeros, we determine which ones are actual zeros:
[tex]\[ f(x) = 4x^3 - 12x^2 - 35x - 12 \][/tex]
After testing each potential rational zero, we find that the actual rational zeros are:
[tex]\[ -\frac{3}{2} \][/tex]
So, the only rational zero of the polynomial [tex]\( f(x) = 4x^3 - 12x^2 - 35x - 12 \)[/tex] is [tex]\(-\frac{3}{2}\)[/tex].
### Step 4: Find all zeros of the polynomial
To find all zeros of the polynomial, we solve [tex]\( f(x) = 0 \)[/tex]. Besides the rational zero [tex]\(-\frac{3}{2}\)[/tex], there might be other zeros. Solving the polynomial equation, we obtain:
[tex]\[ -\frac{3}{2}, \frac{9}{4} - \frac{\sqrt{113}}{4}, \frac{9}{4} + \frac{\sqrt{113}}{4} \][/tex]
### Summary
- Possible rational zeros: [tex]\([-12, -6, -4, -3, -2, -3/2, -1, -3/4, -1/2, -1/4, 1/4, 1/2, 3/4, 1, 3/2, 2, 3, 4, 6, 12]\)[/tex]
- Actual rational zeros: [tex]\([-3/2]\)[/tex]
- All zeros: [tex]\([-3/2, 9/4 - \sqrt{113}/4, 9/4 + \sqrt{113}/4]\)[/tex]
- [tex]\(p\)[/tex] is a factor of the constant term (the term without [tex]\(x\)[/tex]), which is [tex]\(-12\)[/tex].
- [tex]\(q\)[/tex] is a factor of the leading coefficient (the coefficient of the term with the highest power of [tex]\(x\)[/tex]), which is [tex]\(4\)[/tex].
### Step 1: Identify the factors of the constant term and leading coefficient
- The factors of [tex]\(-12\)[/tex] (constant term) are: [tex]\(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\)[/tex].
- The factors of [tex]\(4\)[/tex] (leading coefficient) are: [tex]\(\pm 1, \pm 2, \pm 4\)[/tex].
### Step 2: Generate all possible rational zeros
Using the factors identified, we can list all possible rational zeros [tex]\(\frac{p}{q}\)[/tex]:
[tex]\[ \frac{p}{q} = \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{1}{4}, \pm \frac{3}{4} \][/tex]
Putting them all together in a sorted order, we get the following possible rational zeros:
[tex]\[ -12, -6, -4, -3, -2, -\frac{3}{2}, -1, -\frac{3}{4}, -\frac{1}{2}, -\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \frac{3}{2}, 2, 3, 4, 6, 12 \][/tex]
### Step 3: Test each potential rational zero to find the actual rational zeros
By evaluating [tex]\( f(x) \)[/tex] at each of the possible rational zeros, we determine which ones are actual zeros:
[tex]\[ f(x) = 4x^3 - 12x^2 - 35x - 12 \][/tex]
After testing each potential rational zero, we find that the actual rational zeros are:
[tex]\[ -\frac{3}{2} \][/tex]
So, the only rational zero of the polynomial [tex]\( f(x) = 4x^3 - 12x^2 - 35x - 12 \)[/tex] is [tex]\(-\frac{3}{2}\)[/tex].
### Step 4: Find all zeros of the polynomial
To find all zeros of the polynomial, we solve [tex]\( f(x) = 0 \)[/tex]. Besides the rational zero [tex]\(-\frac{3}{2}\)[/tex], there might be other zeros. Solving the polynomial equation, we obtain:
[tex]\[ -\frac{3}{2}, \frac{9}{4} - \frac{\sqrt{113}}{4}, \frac{9}{4} + \frac{\sqrt{113}}{4} \][/tex]
### Summary
- Possible rational zeros: [tex]\([-12, -6, -4, -3, -2, -3/2, -1, -3/4, -1/2, -1/4, 1/4, 1/2, 3/4, 1, 3/2, 2, 3, 4, 6, 12]\)[/tex]
- Actual rational zeros: [tex]\([-3/2]\)[/tex]
- All zeros: [tex]\([-3/2, 9/4 - \sqrt{113}/4, 9/4 + \sqrt{113}/4]\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.